On the Lebesgue–Nagell equation
Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 245-253
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We completely solve the Diophantine equations
$x^2+2^aq^b=y^n$ (for $q=17, 29, 41$). We also determine all
$C=p_1^{a_1}\cdots p_k^{a_k}$ and
$C=2^{a_0}p_1^{a_1}\cdots p_k^{a_k}$, where $p_1,\ldots,p_k$ are
fixed primes satisfying certain conditions. The corresponding Diophantine equations
$x^2+C=y^n$ may be studied by the method used by Abu Muriefah et al. (2008) and
Luca and Togbé (2009).
Mots-clés :
completely solve diophantine equations determine cdots cdots where ldots fixed primes satisfying certain conditions corresponding diophantine equations may studied method abu muriefah luca togb
Affiliations des auteurs :
Andrzej Dąbrowski 1
@article{10_4064_cm125_2_9,
author = {Andrzej D\k{a}browski},
title = {On the {Lebesgue{\textendash}Nagell} equation},
journal = {Colloquium Mathematicum},
pages = {245--253},
publisher = {mathdoc},
volume = {125},
number = {2},
year = {2011},
doi = {10.4064/cm125-2-9},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-9/}
}
Andrzej Dąbrowski. On the Lebesgue–Nagell equation. Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 245-253. doi: 10.4064/cm125-2-9
Cité par Sources :