On $\beta $-favorability of the strong Choquet game
Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 233-243.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In the main result, partially answering a question of Telgársky, the following is proven: if $X$ is a first countable $R_0$-space, then player $\beta $ (i.e. the EMPTY player) has a winning strategy in the strong Choquet game on $X$ if and only if $X$ contains a nonempty $W_{\delta }$-subspace which is of the first category in itself.
DOI : 10.4064/cm125-2-8
Keywords: main result partially answering question telg rsky following proven first countable space player beta empty player has winning strategy strong choquet game only contains nonempty delta subspace which first category itself

László Zsilinszky 1

1 Department of Mathematics and Computer Science The University of North Carolina at Pembroke Pembroke, NC 28372, U.S.A.
@article{10_4064_cm125_2_8,
     author = {L\'aszl\'o Zsilinszky},
     title = {On $\beta $-favorability of the strong {Choquet} game},
     journal = {Colloquium Mathematicum},
     pages = {233--243},
     publisher = {mathdoc},
     volume = {125},
     number = {2},
     year = {2011},
     doi = {10.4064/cm125-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-8/}
}
TY  - JOUR
AU  - László Zsilinszky
TI  - On $\beta $-favorability of the strong Choquet game
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 233
EP  - 243
VL  - 125
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-8/
DO  - 10.4064/cm125-2-8
LA  - en
ID  - 10_4064_cm125_2_8
ER  - 
%0 Journal Article
%A László Zsilinszky
%T On $\beta $-favorability of the strong Choquet game
%J Colloquium Mathematicum
%D 2011
%P 233-243
%V 125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-8/
%R 10.4064/cm125-2-8
%G en
%F 10_4064_cm125_2_8
László Zsilinszky. On $\beta $-favorability of the strong Choquet game. Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 233-243. doi : 10.4064/cm125-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-8/

Cité par Sources :