Multidimensional Heisenberg convolutions and product formulas for
multivariate Laguerre polynomials
Colloquium Mathematicum, Tome 123 (2011) no. 2, pp. 149-179
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $p,q$ be positive integers.
The groups $U_p(\mathbb{C})$ and $U_p(\mathbb{C})\times U_q(\mathbb{C}) $ act
on the Heisenberg group $H_{p,q}:=M_{p,q}(\mathbb{C})\times \mathbb{R}$ canonically as
groups of automorphisms, where $M_{p,q}(\mathbb{C})$ is the vector space of all
complex $p\times q$ matrices.
The associated orbit spaces may be identified with
${\mit\Pi}_q\times \mathbb{R}$ and ${\mit\Xi}_q\times \mathbb{R}$ respectively,
${\mit\Pi}_q$ being the cone of positive semidefinite matrices and
${\mit\Xi}_q$ the Weyl chamber $\{x\in\mathbb{R}^q : x_1 \ge\cdots\ge x_q\ge 0\}$. In this paper we compute the associated convolutions on ${\mit\Pi}_q\times \mathbb{R}$ and
${\mit\Xi}_q\times \mathbb{R}$
explicitly, depending on $p$.
Moreover, we extend these convolutions by analytic continuation to series of
convolution
structures for arbitrary parameters $p\ge 2q-1$.
This leads for $q\ge 2$ to continuous series of noncommutative hypergroups on ${\mit\Pi}_q\times \mathbb{R}$ and
commutative hypergroups on ${\mit\Xi}_q\times \mathbb{R}$. In the latter case, we describe the dual space in terms
of multivariate Laguerre and Bessel functions on ${\mit\Pi}_q$ and ${\mit\Xi}_q$. In
particular,
we give a nonpositive product formula for these
Laguerre functions on ${\mit\Xi}_q$. The paper extends the known case $q=1$ due to Koornwinder,
Trimèche, and others, as well as the group case with
integers $p$ due to Faraut, Benson, Jenkins, Ratcliff, and others. Moreover,
our results are closely related
to product formulas for multivariate
Bessel and other hypergeometric functions of Rösler.
Keywords:
positive integers groups mathbb mathbb times mathbb act heisenberg group mathbb times mathbb canonically groups automorphisms where mathbb vector space complex times matrices associated orbit spaces may identified mit times mathbb mit times mathbb respectively mit being cone positive semidefinite matrices mit weyl chamber mathbb cdots paper compute associated convolutions mit times mathbb mit times mathbb explicitly depending moreover extend these convolutions analytic continuation series convolution structures arbitrary parameters q leads continuous series noncommutative hypergroups mit times mathbb commutative hypergroups mit times mathbb latter describe dual space terms multivariate laguerre bessel functions mit mit particular nonpositive product formula these laguerre functions mit paper extends known due koornwinder trim che others group integers due faraut benson jenkins ratcliff others moreover results closely related product formulas multivariate bessel other hypergeometric functions sler
Affiliations des auteurs :
Michael Voit 1
@article{10_4064_cm123_2_1,
author = {Michael Voit},
title = {Multidimensional {Heisenberg} convolutions and product formulas for
multivariate {Laguerre} polynomials},
journal = {Colloquium Mathematicum},
pages = {149--179},
publisher = {mathdoc},
volume = {123},
number = {2},
year = {2011},
doi = {10.4064/cm123-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-1/}
}
TY - JOUR AU - Michael Voit TI - Multidimensional Heisenberg convolutions and product formulas for multivariate Laguerre polynomials JO - Colloquium Mathematicum PY - 2011 SP - 149 EP - 179 VL - 123 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-1/ DO - 10.4064/cm123-2-1 LA - en ID - 10_4064_cm123_2_1 ER -
%0 Journal Article %A Michael Voit %T Multidimensional Heisenberg convolutions and product formulas for multivariate Laguerre polynomials %J Colloquium Mathematicum %D 2011 %P 149-179 %V 123 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-1/ %R 10.4064/cm123-2-1 %G en %F 10_4064_cm123_2_1
Michael Voit. Multidimensional Heisenberg convolutions and product formulas for multivariate Laguerre polynomials. Colloquium Mathematicum, Tome 123 (2011) no. 2, pp. 149-179. doi: 10.4064/cm123-2-1
Cité par Sources :