The localisation of primes in arithmetic progressions of irrational modulus
Colloquium Mathematicum, Tome 123 (2011) no. 1, pp. 53-61.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A new method for counting primes in a Beatty sequence is proposed, and it is shown that an asymptotic formula can be obtained for the number of such primes in a short interval.
DOI : 10.4064/cm123-1-5
Keywords: method counting primes beatty sequence proposed shown asymptotic formula obtained number primes short interval

Jörg Brüdern 1 ; Koichi Kawada 2

1 Mathematisches Institut Bunsenstrasse 3–5 D-37073 Göttingen, Germany
2 Department of Mathematics Faculty of Education Iwate University Morioka, 020–8550 Japan
@article{10_4064_cm123_1_5,
     author = {J\"org Br\"udern and Koichi Kawada},
     title = {The localisation of primes
 in arithmetic progressions of irrational modulus},
     journal = {Colloquium Mathematicum},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {123},
     number = {1},
     year = {2011},
     doi = {10.4064/cm123-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-5/}
}
TY  - JOUR
AU  - Jörg Brüdern
AU  - Koichi Kawada
TI  - The localisation of primes
 in arithmetic progressions of irrational modulus
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 53
EP  - 61
VL  - 123
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-5/
DO  - 10.4064/cm123-1-5
LA  - en
ID  - 10_4064_cm123_1_5
ER  - 
%0 Journal Article
%A Jörg Brüdern
%A Koichi Kawada
%T The localisation of primes
 in arithmetic progressions of irrational modulus
%J Colloquium Mathematicum
%D 2011
%P 53-61
%V 123
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-5/
%R 10.4064/cm123-1-5
%G en
%F 10_4064_cm123_1_5
Jörg Brüdern; Koichi Kawada. The localisation of primes
 in arithmetic progressions of irrational modulus. Colloquium Mathematicum, Tome 123 (2011) no. 1, pp. 53-61. doi : 10.4064/cm123-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-5/

Cité par Sources :