On partitions in cylinders over continua and a question of Krasinkiewicz
Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 203-214.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that a metrizable continuum $X$ is locally connected if and only if every partition in the cylinder over $X$ between the bottom and the top of the cylinder contains a connected partition between these sets. J. Krasinkiewicz asked whether for every metrizable continuum $X$ there exists a partiton $L$ between the top and the bottom of the cylinder $X\times I$ such that $L$ is a hereditarily indecomposable continuum. We answer this question in the negative. We also present a construction of such partitions for any continuum $X$ which, for every $\epsilon > 0$, admits a confluent $\epsilon $-mapping onto a locally connected continuum.
DOI : 10.4064/cm122-2-5
Keywords: metrizable continuum locally connected only every partition cylinder between bottom top cylinder contains connected partition between these sets krasinkiewicz asked whether every metrizable continuum there exists partiton between top bottom cylinder times hereditarily indecomposable continuum answer question negative present construction partitions continuum which every epsilon admits confluent epsilon mapping locally connected continuum

Mirosława Reńska 1

1 Institute of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_cm122_2_5,
     author = {Miros{\l}awa Re\'nska},
     title = {On partitions in cylinders over continua
 and a question of {Krasinkiewicz}},
     journal = {Colloquium Mathematicum},
     pages = {203--214},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {2011},
     doi = {10.4064/cm122-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-5/}
}
TY  - JOUR
AU  - Mirosława Reńska
TI  - On partitions in cylinders over continua
 and a question of Krasinkiewicz
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 203
EP  - 214
VL  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-5/
DO  - 10.4064/cm122-2-5
LA  - en
ID  - 10_4064_cm122_2_5
ER  - 
%0 Journal Article
%A Mirosława Reńska
%T On partitions in cylinders over continua
 and a question of Krasinkiewicz
%J Colloquium Mathematicum
%D 2011
%P 203-214
%V 122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-5/
%R 10.4064/cm122-2-5
%G en
%F 10_4064_cm122_2_5
Mirosława Reńska. On partitions in cylinders over continua
 and a question of Krasinkiewicz. Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 203-214. doi : 10.4064/cm122-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-5/

Cité par Sources :