Some quartic number fields containing
an imaginary quadratic subfield
Colloquium Mathematicum, Tome 122 (2011) no. 1, pp. 139-148
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\varepsilon$ be a quartic algebraic unit.
We give necessary and sufficient conditions for
(i) the quartic number field $K ={\mathbb Q}(\varepsilon)$ to contain an imaginary quadratic subfield,
and (ii) for the ring of algebraic integers of $K$ to be equal to ${\mathbb Z}[\varepsilon]$.
We also prove that the class number of such $K$'s goes to infinity effectively with the discriminant of $K$.
Keywords:
varepsilon quartic algebraic unit necessary sufficient conditions quartic number field mathbb varepsilon contain imaginary quadratic subfield ring algebraic integers equal mathbb varepsilon prove class number goes infinity effectively discriminant nbsp
Affiliations des auteurs :
Stéphane R. Louboutin 1
@article{10_4064_cm122_1_13,
author = {St\'ephane R. Louboutin},
title = {Some quartic number fields containing
an imaginary quadratic subfield},
journal = {Colloquium Mathematicum},
pages = {139--148},
publisher = {mathdoc},
volume = {122},
number = {1},
year = {2011},
doi = {10.4064/cm122-1-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-1-13/}
}
TY - JOUR AU - Stéphane R. Louboutin TI - Some quartic number fields containing an imaginary quadratic subfield JO - Colloquium Mathematicum PY - 2011 SP - 139 EP - 148 VL - 122 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm122-1-13/ DO - 10.4064/cm122-1-13 LA - en ID - 10_4064_cm122_1_13 ER -
Stéphane R. Louboutin. Some quartic number fields containing an imaginary quadratic subfield. Colloquium Mathematicum, Tome 122 (2011) no. 1, pp. 139-148. doi: 10.4064/cm122-1-13
Cité par Sources :