Beyond Lebesgue and Baire II: Bitopology and measure-category duality
Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 225-238.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We re-examine measure-category duality by a bitopological approach, using both the Euclidean and the density topologies of the line. We give a topological result (on convergence of homeomorphisms to the identity) obtaining as a corollary results on infinitary combinatorics due to Kestelman and to Borwein and Ditor. We hence give a unified proof of the measure and category cases of the Uniform Convergence Theorem for slowly varying functions. We also extend results on very slowly varying functions of Ash, Erdős and Rubel.
DOI : 10.4064/cm121-2-5
Keywords: re examine measure category duality bitopological approach using euclidean density topologies line topological result convergence homeomorphisms identity obtaining corollary results infinitary combinatorics due kestelman borwein ditor hence unified proof measure category cases uniform convergence theorem slowly varying functions extend results slowly varying functions ash erd rubel

N. H. Bingham 1 ; A. J. Ostaszewski 2

1 Mathematics Department Imperial College London London SW7 2AZ, UK
2 Mathematics Department London School of Economics Houghton Street London WC2A 2AE, UK
@article{10_4064_cm121_2_5,
     author = {N. H. Bingham and A. J. Ostaszewski},
     title = {Beyond {Lebesgue} and {Baire} {II:
} {Bitopology} and measure-category duality},
     journal = {Colloquium Mathematicum},
     pages = {225--238},
     publisher = {mathdoc},
     volume = {121},
     number = {2},
     year = {2010},
     doi = {10.4064/cm121-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-5/}
}
TY  - JOUR
AU  - N. H. Bingham
AU  - A. J. Ostaszewski
TI  - Beyond Lebesgue and Baire II:
 Bitopology and measure-category duality
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 225
EP  - 238
VL  - 121
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-5/
DO  - 10.4064/cm121-2-5
LA  - en
ID  - 10_4064_cm121_2_5
ER  - 
%0 Journal Article
%A N. H. Bingham
%A A. J. Ostaszewski
%T Beyond Lebesgue and Baire II:
 Bitopology and measure-category duality
%J Colloquium Mathematicum
%D 2010
%P 225-238
%V 121
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-5/
%R 10.4064/cm121-2-5
%G en
%F 10_4064_cm121_2_5
N. H. Bingham; A. J. Ostaszewski. Beyond Lebesgue and Baire II:
 Bitopology and measure-category duality. Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 225-238. doi : 10.4064/cm121-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-5/

Cité par Sources :