Beyond Lebesgue and Baire II:
Bitopology and measure-category duality
Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 225-238
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We re-examine measure-category duality by a bitopological approach, using both the Euclidean and the density topologies of the line. We give a topological result (on convergence of homeomorphisms to the identity) obtaining as a corollary results on infinitary combinatorics due to Kestelman and to Borwein and Ditor. We hence give a unified proof of the measure and category cases of the Uniform Convergence Theorem for slowly varying functions. We also extend results on very slowly varying functions of Ash, Erdős and Rubel.
Keywords:
re examine measure category duality bitopological approach using euclidean density topologies line topological result convergence homeomorphisms identity obtaining corollary results infinitary combinatorics due kestelman borwein ditor hence unified proof measure category cases uniform convergence theorem slowly varying functions extend results slowly varying functions ash erd rubel
Affiliations des auteurs :
N. H. Bingham 1 ; A. J. Ostaszewski 2
@article{10_4064_cm121_2_5,
author = {N. H. Bingham and A. J. Ostaszewski},
title = {Beyond {Lebesgue} and {Baire} {II:
} {Bitopology} and measure-category duality},
journal = {Colloquium Mathematicum},
pages = {225--238},
year = {2010},
volume = {121},
number = {2},
doi = {10.4064/cm121-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-5/}
}
TY - JOUR AU - N. H. Bingham AU - A. J. Ostaszewski TI - Beyond Lebesgue and Baire II: Bitopology and measure-category duality JO - Colloquium Mathematicum PY - 2010 SP - 225 EP - 238 VL - 121 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-5/ DO - 10.4064/cm121-2-5 LA - en ID - 10_4064_cm121_2_5 ER -
N. H. Bingham; A. J. Ostaszewski. Beyond Lebesgue and Baire II: Bitopology and measure-category duality. Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 225-238. doi: 10.4064/cm121-2-5
Cité par Sources :