On the Davenport constant and group algebras
Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 179-193
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a finite abelian group $G$ and a
splitting field $K$ of $G$, let $\mathsf d (G, K)$ denote the
largest integer $l \in \mathbb N$ for which there is a sequence $S = g_1
\cdot \ldots \cdot g_l$ over $G$ such that $(X^{g_1} - a_1) \cdot
\ldots \cdot (X^{g_l} - a_l) \ne 0 \in K[G]$ for all $a_1,
\ldots, a_l \in K^{\times}$. If $\mathsf D (G)$ denotes the
Davenport constant of $G$, then there is the straightforward
inequality $\mathsf D (G)-1 \le \mathsf d (G, K)$. Equality holds
for a variety of groups, and a conjecture of W. Gao et al. states
that equality holds for all groups. We offer further groups for
which equality holds, but we also give the first examples of
groups $G$ for which $\mathsf D (G) -1 \mathsf d (G, K)$. Thus
we disprove the conjecture.
Keywords:
finite abelian group splitting field mathsf denote largest integer mathbb which there sequence cdot ldots cdot cdot ldots cdot ldots times mathsf denotes davenport constant there straightforward inequality mathsf mathsf equality holds variety groups conjecture gao nbsp states equality holds groups offer further groups which equality holds first examples groups which mathsf mathsf disprove conjecture
Affiliations des auteurs :
Daniel Smertnig 1
@article{10_4064_cm121_2_2,
author = {Daniel Smertnig},
title = {On the {Davenport} constant and group algebras},
journal = {Colloquium Mathematicum},
pages = {179--193},
publisher = {mathdoc},
volume = {121},
number = {2},
year = {2010},
doi = {10.4064/cm121-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-2/}
}
Daniel Smertnig. On the Davenport constant and group algebras. Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 179-193. doi: 10.4064/cm121-2-2
Cité par Sources :