On the Davenport constant and group algebras
Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 179-193.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a finite abelian group $G$ and a splitting field $K$ of $G$, let $\mathsf d (G, K)$ denote the largest integer $l \in \mathbb N$ for which there is a sequence $S = g_1 \cdot \ldots \cdot g_l$ over $G$ such that $(X^{g_1} - a_1) \cdot \ldots \cdot (X^{g_l} - a_l) \ne 0 \in K[G]$ for all $a_1, \ldots, a_l \in K^{\times}$. If $\mathsf D (G)$ denotes the Davenport constant of $G$, then there is the straightforward inequality $\mathsf D (G)-1 \le \mathsf d (G, K)$. Equality holds for a variety of groups, and a conjecture of W. Gao et al. states that equality holds for all groups. We offer further groups for which equality holds, but we also give the first examples of groups $G$ for which $\mathsf D (G) -1 \mathsf d (G, K)$. Thus we disprove the conjecture.
DOI : 10.4064/cm121-2-2
Keywords: finite abelian group splitting field mathsf denote largest integer mathbb which there sequence cdot ldots cdot cdot ldots cdot ldots times mathsf denotes davenport constant there straightforward inequality mathsf mathsf equality holds variety groups conjecture gao nbsp states equality holds groups offer further groups which equality holds first examples groups which mathsf mathsf disprove conjecture

Daniel Smertnig 1

1 Institut für Mathematik und Wissenschaftliches Rechnen Karl-Franzens-Universität Graz Heinrichstraße 36 8010 Graz, Austria
@article{10_4064_cm121_2_2,
     author = {Daniel Smertnig},
     title = {On the {Davenport} constant and group algebras},
     journal = {Colloquium Mathematicum},
     pages = {179--193},
     publisher = {mathdoc},
     volume = {121},
     number = {2},
     year = {2010},
     doi = {10.4064/cm121-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-2/}
}
TY  - JOUR
AU  - Daniel Smertnig
TI  - On the Davenport constant and group algebras
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 179
EP  - 193
VL  - 121
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-2/
DO  - 10.4064/cm121-2-2
LA  - en
ID  - 10_4064_cm121_2_2
ER  - 
%0 Journal Article
%A Daniel Smertnig
%T On the Davenport constant and group algebras
%J Colloquium Mathematicum
%D 2010
%P 179-193
%V 121
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-2/
%R 10.4064/cm121-2-2
%G en
%F 10_4064_cm121_2_2
Daniel Smertnig. On the Davenport constant and group algebras. Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 179-193. doi : 10.4064/cm121-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-2/

Cité par Sources :