A generalization of Bateman's expansion and finite integrals of Sonine's and Feldheim's type
Colloquium Mathematicum, Tome 119 (2010) no. 2, pp. 237-254.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\{A_{k}\}_{k=0}^{+\infty}$ be a sequence of arbitrary complex numbers, let $\alpha, \beta>-1$, let $\{P_{n}^{\alpha, \beta}\}_{n=0}^{+\infty}$ be the Jacobi polynomials and define the functions $$\eqalign{ H_{n}(\alpha, z) =\sum_{m=n}^{+\infty}\frac{A_{m}z^{m}}{{\mit\Gamma}( \alpha+n+m+1) ( m-n) !},\cr G( \alpha, \beta, x, y) =\sum_{r,s=0}^{+\infty}\frac{A_{r+s}x^{r}y^{s}}{{\mit\Gamma}( \alpha+r+1) {\mit\Gamma}( \beta+s+1) r!s!}.\cr}$$ Then, for any non-negative integer $n$, \begin{multline*} \int_{0}^{{\pi}/{2}}G( \alpha, \beta, x^{2}\sin^{2}\phi , y^{2}\cos^{2}\phi) P_{n}^{\alpha, \beta}( \cos2\phi) \sin^{2\alpha+1}\phi\cos^{2\beta+1}\phi \,d \\ =\frac{1}{2}H_{n}( \alpha+\beta+1, x^{2}+y^{2}) P_{n}^{\alpha, \beta} \left( \frac{y^{2}-x^{2}}{y^{2}+x^{2}}\right) .\end{multline*} When $A_{k}=( -1/4) ^{k}$, this formula reduces to Bateman's expansion for Bessel functions. For particular values of $y$ and $n$ one obtains generalizations of several formulas already known for Bessel functions, like Sonine's first and second finite integrals and certain Neumann series expansions. Particular choices of $\{A_{k}\}_{k=0}^{+\infty}$ allow one to write all these type of formulas for specific special functions, like Gegenbauer, Jacobi and Laguerre polynomials, Jacobi functions, or hypergeometric functions.
DOI : 10.4064/cm119-2-6
Keywords: infty sequence arbitrary complex numbers alpha beta alpha beta infty jacobi polynomials define functions eqalign alpha sum infty frac mit gamma alpha m n alpha beta sum infty frac mit gamma alpha mit gamma beta non negative integer begin multline* int alpha beta sin phi cos phi alpha beta cos phi sin alpha phi cos beta phi frac alpha beta alpha beta frac x right end multline* formula reduces batemans expansion bessel functions particular values obtains generalizations several formulas already known bessel functions sonines first second finite integrals certain neumann series expansions particular choices infty allow write these type formulas specific special functions gegenbauer jacobi laguerre polynomials jacobi functions hypergeometric functions

Giacomo Gigante 1

1 Dipartimento di Ingegneria dell'Informazione e Metodi Matematici Università di Bergamo Viale Marconi 5, 24044 Dalmine (BG), Italy
@article{10_4064_cm119_2_6,
     author = {Giacomo Gigante},
     title = {A generalization of {Bateman's} expansion and finite integrals {of
Sonine's} and {Feldheim's} type},
     journal = {Colloquium Mathematicum},
     pages = {237--254},
     publisher = {mathdoc},
     volume = {119},
     number = {2},
     year = {2010},
     doi = {10.4064/cm119-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-6/}
}
TY  - JOUR
AU  - Giacomo Gigante
TI  - A generalization of Bateman's expansion and finite integrals of
Sonine's and Feldheim's type
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 237
EP  - 254
VL  - 119
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-6/
DO  - 10.4064/cm119-2-6
LA  - en
ID  - 10_4064_cm119_2_6
ER  - 
%0 Journal Article
%A Giacomo Gigante
%T A generalization of Bateman's expansion and finite integrals of
Sonine's and Feldheim's type
%J Colloquium Mathematicum
%D 2010
%P 237-254
%V 119
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-6/
%R 10.4064/cm119-2-6
%G en
%F 10_4064_cm119_2_6
Giacomo Gigante. A generalization of Bateman's expansion and finite integrals of
Sonine's and Feldheim's type. Colloquium Mathematicum, Tome 119 (2010) no. 2, pp. 237-254. doi : 10.4064/cm119-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-6/

Cité par Sources :