Minkowski sums of Cantor-type sets
Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 95-108.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The classical Steinhaus theorem on the Minkowski sum of the Cantor set is generalized to a large class of fractals determined by Hutchinson-type operators. Numerous examples illustrating the results obtained and an application to $t$-convex functions are presented.
DOI : 10.4064/cm119-1-5
Mots-clés : classical steinhaus theorem minkowski sum cantor set generalized large class fractals determined hutchinson type operators numerous examples illustrating results obtained application t convex functions presented

Kazimierz Nikodem 1 ; Zsolt Páles 2

1 Department of Mathematics and Computer Science University of Bielsko-Biała Willowa 2 43-309 Bielsko-Biała, Poland
2 Institute of Mathematics University of Debrecen H-4010 Debrecen, Pf. 12, Hungary
@article{10_4064_cm119_1_5,
     author = {Kazimierz Nikodem and Zsolt P\'ales},
     title = {Minkowski sums of {Cantor-type} sets},
     journal = {Colloquium Mathematicum},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {2010},
     doi = {10.4064/cm119-1-5},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-5/}
}
TY  - JOUR
AU  - Kazimierz Nikodem
AU  - Zsolt Páles
TI  - Minkowski sums of Cantor-type sets
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 95
EP  - 108
VL  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-5/
DO  - 10.4064/cm119-1-5
LA  - pl
ID  - 10_4064_cm119_1_5
ER  - 
%0 Journal Article
%A Kazimierz Nikodem
%A Zsolt Páles
%T Minkowski sums of Cantor-type sets
%J Colloquium Mathematicum
%D 2010
%P 95-108
%V 119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-5/
%R 10.4064/cm119-1-5
%G pl
%F 10_4064_cm119_1_5
Kazimierz Nikodem; Zsolt Páles. Minkowski sums of Cantor-type sets. Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 95-108. doi : 10.4064/cm119-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-5/

Cité par Sources :