Asymptotic properties of harmonic measures on homogeneous trees
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 525-537.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\rm Aff} ({\mathbb T})$ be the group of isometries of a homogeneous tree ${\mathbb T}$ fixing an end of its boundary. Given a probability measure on ${\rm Aff} ({\mathbb T})$ we consider an associated random process on the tree. It is known that under suitable hypothesis this random process converges to the boundary of the tree defining a harmonic measure there. In this paper we study the asymptotic behaviour of this measure.
DOI : 10.4064/cm118-2-9
Keywords: aff mathbb group isometries homogeneous tree mathbb fixing end its boundary given probability measure aff mathbb consider associated random process tree known under suitable hypothesis random process converges boundary tree defining harmonic measure there paper study asymptotic behaviour measure

Konrad Kolesko 1

1 Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_cm118_2_9,
     author = {Konrad Kolesko},
     title = {Asymptotic properties of harmonic measures on homogeneous
trees},
     journal = {Colloquium Mathematicum},
     pages = {525--537},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-9/}
}
TY  - JOUR
AU  - Konrad Kolesko
TI  - Asymptotic properties of harmonic measures on homogeneous
trees
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 525
EP  - 537
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-9/
DO  - 10.4064/cm118-2-9
LA  - en
ID  - 10_4064_cm118_2_9
ER  - 
%0 Journal Article
%A Konrad Kolesko
%T Asymptotic properties of harmonic measures on homogeneous
trees
%J Colloquium Mathematicum
%D 2010
%P 525-537
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-9/
%R 10.4064/cm118-2-9
%G en
%F 10_4064_cm118_2_9
Konrad Kolesko. Asymptotic properties of harmonic measures on homogeneous
trees. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 525-537. doi : 10.4064/cm118-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-9/

Cité par Sources :