Long time behavior of random walks on abelian groups
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 445-464.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathbb{G}$ be a locally compact non-compact metric group. Assuming that $\mathbb{G}$ is abelian we construct symmetric aperiodic random walks on $\mathbb{G}$ with probabilities $n \mapsto \mathbb{P} (S_{2n} \in V)$ of return to any neighborhood $V$ of the neutral element decaying at infinity almost as fast as the exponential function $n \mapsto \exp (-n)$. We also show that for some discrete groups $\mathbb{G}$, the decay of the function $n \mapsto \mathbb{P}(S_{2n} \in V)$ can be made as slow as possible by choosing appropriate aperiodic random walks $S_n$ on $\mathbb{G}$.
DOI : 10.4064/cm118-2-6
Keywords: mathbb locally compact non compact metric group assuming mathbb abelian construct symmetric aperiodic random walks mathbb probabilities mapsto mathbb return neighborhood neutral element decaying infinity almost fast exponential function mapsto exp n discrete groups mathbb decay function mapsto mathbb made slow possible choosing appropriate aperiodic random walks mathbb

Alexander Bendikov 1 ; Barbara Bobikau 1

1 Institute of Mathematics Wrocław University Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_cm118_2_6,
     author = {Alexander Bendikov and Barbara Bobikau},
     title = {Long time behavior of random walks on abelian groups},
     journal = {Colloquium Mathematicum},
     pages = {445--464},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-6/}
}
TY  - JOUR
AU  - Alexander Bendikov
AU  - Barbara Bobikau
TI  - Long time behavior of random walks on abelian groups
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 445
EP  - 464
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-6/
DO  - 10.4064/cm118-2-6
LA  - en
ID  - 10_4064_cm118_2_6
ER  - 
%0 Journal Article
%A Alexander Bendikov
%A Barbara Bobikau
%T Long time behavior of random walks on abelian groups
%J Colloquium Mathematicum
%D 2010
%P 445-464
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-6/
%R 10.4064/cm118-2-6
%G en
%F 10_4064_cm118_2_6
Alexander Bendikov; Barbara Bobikau. Long time behavior of random walks on abelian groups. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 445-464. doi : 10.4064/cm118-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-6/

Cité par Sources :