Long time behavior of random walks on abelian groups
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 445-464
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathbb{G}$ be a locally compact
non-compact metric group. Assuming that $\mathbb{G}$ is abelian we
construct symmetric aperiodic random walks on $\mathbb{G}$ with
probabilities $n \mapsto \mathbb{P} (S_{2n} \in V)$ of return to any
neighborhood $V$ of the neutral element decaying at infinity
almost as fast as the exponential function $n \mapsto \exp (-n)$. We
also show that for some discrete groups $\mathbb{G}$, the decay of the
function $n \mapsto \mathbb{P}(S_{2n} \in V)$ can be made as slow as
possible by choosing appropriate aperiodic random walks $S_n$
on $\mathbb{G}$.
Keywords:
mathbb locally compact non compact metric group assuming mathbb abelian construct symmetric aperiodic random walks mathbb probabilities mapsto mathbb return neighborhood neutral element decaying infinity almost fast exponential function mapsto exp n discrete groups mathbb decay function mapsto mathbb made slow possible choosing appropriate aperiodic random walks mathbb
Affiliations des auteurs :
Alexander Bendikov 1 ; Barbara Bobikau 1
@article{10_4064_cm118_2_6,
author = {Alexander Bendikov and Barbara Bobikau},
title = {Long time behavior of random walks on abelian groups},
journal = {Colloquium Mathematicum},
pages = {445--464},
publisher = {mathdoc},
volume = {118},
number = {2},
year = {2010},
doi = {10.4064/cm118-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-6/}
}
TY - JOUR AU - Alexander Bendikov AU - Barbara Bobikau TI - Long time behavior of random walks on abelian groups JO - Colloquium Mathematicum PY - 2010 SP - 445 EP - 464 VL - 118 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-6/ DO - 10.4064/cm118-2-6 LA - en ID - 10_4064_cm118_2_6 ER -
Alexander Bendikov; Barbara Bobikau. Long time behavior of random walks on abelian groups. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 445-464. doi: 10.4064/cm118-2-6
Cité par Sources :