The Montgomery model revisited
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 391-400.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss the spectral properties of the operator $$ {\mathfrak h} _{\mathcal M}(\alpha):=-\frac{d^2}{dt^2} + \bigg(\frac{1}{2}\, t^{2} -\alpha\bigg)^2 $$ on the line. We first briefly describe how this operator appears in various problems in the analysis of operators on nilpotent Lie groups, in the spectral properties of a Schrödinger operator with magnetic field and in superconductivity. We then give a new proof that the minimum over $\alpha$ of the groundstate energy is attained at a unique point and also prove that the minimum is non-degenerate. Our study can also be seen as a refinement for a specific nilpotent group of a general analysis proposed by J. Dziubański, A. Hulanicki and J. Jenkins.
DOI : 10.4064/cm118-2-3
Keywords: discuss spectral properties operator mathfrak mathcal alpha frac bigg frac alpha bigg line first briefly describe operator appears various problems analysis operators nilpotent lie groups spectral properties schr dinger operator magnetic field superconductivity proof minimum alpha groundstate energy attained unique point prove minimum non degenerate study seen refinement specific nilpotent group general analysis proposed nbsp dziuba ski nbsp hulanicki nbsp jenkins

B. Helffer 1

1 Laboratoire de Mathématiques Université Paris-Sud and CNRS Bât. 425 F-91405 Orsay Cedex, France
@article{10_4064_cm118_2_3,
     author = {B. Helffer},
     title = {The {Montgomery}  model revisited},
     journal = {Colloquium Mathematicum},
     pages = {391--400},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-3/}
}
TY  - JOUR
AU  - B. Helffer
TI  - The Montgomery  model revisited
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 391
EP  - 400
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-3/
DO  - 10.4064/cm118-2-3
LA  - en
ID  - 10_4064_cm118_2_3
ER  - 
%0 Journal Article
%A B. Helffer
%T The Montgomery  model revisited
%J Colloquium Mathematicum
%D 2010
%P 391-400
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-3/
%R 10.4064/cm118-2-3
%G en
%F 10_4064_cm118_2_3
B. Helffer. The Montgomery  model revisited. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 391-400. doi : 10.4064/cm118-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-3/

Cité par Sources :