Riesz meets Sobolev
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 685-704.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the $L^p$ boundedness, $p>2$, of the Riesz transform on a complete non-compact Riemannian manifold with upper and lower Gaussian heat kernel estimates is equivalent to a certain form of Sobolev inequality. We also characterize in such terms the heat kernel gradient upper estimate on manifolds with polynomial growth.
DOI : 10.4064/cm118-2-20
Keywords: boundedness riesz transform complete non compact riemannian manifold upper lower gaussian heat kernel estimates equivalent certain form sobolev inequality characterize terms heat kernel gradient upper estimate manifolds polynomial growth

Thierry Coulhon 1 ; Adam Sikora 2

1 Département de Mathématiques Université de Cergy-Pontoise Site de Saint-Martin 2, rue Adolphe Chauvin F-95302 Cergy-Pontoise Cedex, France
2 Department of Mathematics Macquarie University Sydney, NSW 2109, Australia
@article{10_4064_cm118_2_20,
     author = {Thierry Coulhon and Adam Sikora},
     title = {Riesz meets {Sobolev}},
     journal = {Colloquium Mathematicum},
     pages = {685--704},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-20/}
}
TY  - JOUR
AU  - Thierry Coulhon
AU  - Adam Sikora
TI  - Riesz meets Sobolev
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 685
EP  - 704
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-20/
DO  - 10.4064/cm118-2-20
LA  - en
ID  - 10_4064_cm118_2_20
ER  - 
%0 Journal Article
%A Thierry Coulhon
%A Adam Sikora
%T Riesz meets Sobolev
%J Colloquium Mathematicum
%D 2010
%P 685-704
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-20/
%R 10.4064/cm118-2-20
%G en
%F 10_4064_cm118_2_20
Thierry Coulhon; Adam Sikora. Riesz meets Sobolev. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 685-704. doi : 10.4064/cm118-2-20. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-20/

Cité par Sources :