Riesz meets Sobolev
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 685-704
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the $L^p$ boundedness, $p>2$, of the Riesz transform on a complete non-compact Riemannian manifold with upper and lower Gaussian heat kernel estimates is equivalent to a certain form of Sobolev inequality. We also characterize in such terms the heat kernel gradient upper estimate on manifolds with polynomial growth.
Keywords:
boundedness riesz transform complete non compact riemannian manifold upper lower gaussian heat kernel estimates equivalent certain form sobolev inequality characterize terms heat kernel gradient upper estimate manifolds polynomial growth
Affiliations des auteurs :
Thierry Coulhon 1 ; Adam Sikora 2
@article{10_4064_cm118_2_20,
author = {Thierry Coulhon and Adam Sikora},
title = {Riesz meets {Sobolev}},
journal = {Colloquium Mathematicum},
pages = {685--704},
publisher = {mathdoc},
volume = {118},
number = {2},
year = {2010},
doi = {10.4064/cm118-2-20},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-20/}
}
Thierry Coulhon; Adam Sikora. Riesz meets Sobolev. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 685-704. doi: 10.4064/cm118-2-20
Cité par Sources :