Howe's correspondence for a generic harmonic analyst
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 539-557
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The goal of this article is to explain Howe's correspondence to a reader who is not necessarily an expert on representation theory of real reductive groups, but is
familiar with general concepts of harmonic analysis.
We recall Howe's construction of the oscillator representation,
the notion of a dual pair and a few basic and general facts concerning the correspondence.
Keywords:
article explain howes correspondence reader who necessarily expert representation theory real reductive groups familiar general concepts harmonic analysis recall howes construction oscillator representation notion dual pair few basic general facts concerning correspondence
Affiliations des auteurs :
M. McKee 1 ; T. Przebinda 1
@article{10_4064_cm118_2_10,
author = {M. McKee and T. Przebinda},
title = {Howe's correspondence for a generic harmonic analyst},
journal = {Colloquium Mathematicum},
pages = {539--557},
publisher = {mathdoc},
volume = {118},
number = {2},
year = {2010},
doi = {10.4064/cm118-2-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-10/}
}
TY - JOUR AU - M. McKee AU - T. Przebinda TI - Howe's correspondence for a generic harmonic analyst JO - Colloquium Mathematicum PY - 2010 SP - 539 EP - 557 VL - 118 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-10/ DO - 10.4064/cm118-2-10 LA - en ID - 10_4064_cm118_2_10 ER -
M. McKee; T. Przebinda. Howe's correspondence for a generic harmonic analyst. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 539-557. doi: 10.4064/cm118-2-10
Cité par Sources :