$H^1$ and BMO for certain locally doubling
metric measure spaces of finite measure
Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 13-41
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In a previous paper the authors developed an $H^1\hbox{-BMO}$ theory for
unbounded metric measure spaces $(M,\rho,\mu)$ of infinite measure that
are locally doubling and satisfy two geometric properties, called
“approximate midpoint” property and “isoperimetric” property. In this
paper we develop a similar theory for spaces of finite measure.
We prove that all the results that hold in the infinite measure case have their
counterparts in the finite measure case.
Finally, we show that the theory applies to a class of unbounded,
complete Riemannian manifolds of finite measure and to a
class of metric measure spaces of the form
$(\mathbb R^d,\rho_\varphi, \mu_\varphi)$, where
${\rm d}\mu_\varphi = {\rm e}^{-\varphi}\,{\rm d} x$
and $\rho_\varphi$ is the
Riemannian metric corresponding to the length element
${\rm d} s^2=(1+|\nabla\varphi|)^2
({\rm d} x_1^2 +\cdots+{\rm d} x_d^2)$.
This generalizes previous work of the last
two authors for the Gauss space.
Keywords:
previous paper authors developed hbox bmo theory unbounded metric measure spaces rho infinite measure locally doubling satisfy geometric properties called approximate midpoint property isoperimetric property paper develop similar theory spaces finite measure prove results infinite measure have their counterparts finite measure finally theory applies class unbounded complete riemannian manifolds finite measure class metric measure spaces form mathbb rho varphi varphi where varphi varphi rho varphi riemannian metric corresponding length element nabla varphi cdots generalizes previous work authors gauss space
Affiliations des auteurs :
Andrea Carbonaro 1 ; Giancarlo Mauceri 1 ; Stefano Meda 2
@article{10_4064_cm118_1_2,
author = {Andrea Carbonaro and Giancarlo Mauceri and Stefano Meda},
title = {$H^1$ and {BMO} for certain locally doubling
metric measure spaces of finite measure},
journal = {Colloquium Mathematicum},
pages = {13--41},
publisher = {mathdoc},
volume = {118},
number = {1},
year = {2010},
doi = {10.4064/cm118-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-2/}
}
TY - JOUR AU - Andrea Carbonaro AU - Giancarlo Mauceri AU - Stefano Meda TI - $H^1$ and BMO for certain locally doubling metric measure spaces of finite measure JO - Colloquium Mathematicum PY - 2010 SP - 13 EP - 41 VL - 118 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-2/ DO - 10.4064/cm118-1-2 LA - en ID - 10_4064_cm118_1_2 ER -
%0 Journal Article %A Andrea Carbonaro %A Giancarlo Mauceri %A Stefano Meda %T $H^1$ and BMO for certain locally doubling metric measure spaces of finite measure %J Colloquium Mathematicum %D 2010 %P 13-41 %V 118 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-2/ %R 10.4064/cm118-1-2 %G en %F 10_4064_cm118_1_2
Andrea Carbonaro; Giancarlo Mauceri; Stefano Meda. $H^1$ and BMO for certain locally doubling metric measure spaces of finite measure. Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 13-41. doi: 10.4064/cm118-1-2
Cité par Sources :