$H^1$ and BMO for certain locally doubling metric measure spaces of finite measure
Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 13-41.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In a previous paper the authors developed an $H^1\hbox{-BMO}$ theory for unbounded metric measure spaces $(M,\rho,\mu)$ of infinite measure that are locally doubling and satisfy two geometric properties, called “approximate midpoint” property and “isoperimetric” property. In this paper we develop a similar theory for spaces of finite measure. We prove that all the results that hold in the infinite measure case have their counterparts in the finite measure case. Finally, we show that the theory applies to a class of unbounded, complete Riemannian manifolds of finite measure and to a class of metric measure spaces of the form $(\mathbb R^d,\rho_\varphi, \mu_\varphi)$, where ${\rm d}\mu_\varphi = {\rm e}^{-\varphi}\,{\rm d} x$ and $\rho_\varphi$ is the Riemannian metric corresponding to the length element ${\rm d} s^2=(1+|\nabla\varphi|)^2 ({\rm d} x_1^2 +\cdots+{\rm d} x_d^2)$. This generalizes previous work of the last two authors for the Gauss space.
DOI : 10.4064/cm118-1-2
Keywords: previous paper authors developed hbox bmo theory unbounded metric measure spaces rho infinite measure locally doubling satisfy geometric properties called approximate midpoint property isoperimetric property paper develop similar theory spaces finite measure prove results infinite measure have their counterparts finite measure finally theory applies class unbounded complete riemannian manifolds finite measure class metric measure spaces form mathbb rho varphi varphi where varphi varphi rho varphi riemannian metric corresponding length element nabla varphi cdots generalizes previous work authors gauss space

Andrea Carbonaro 1 ; Giancarlo Mauceri 1 ; Stefano Meda 2

1 Dipartimento di Matematica Università di Genova via Dodecaneso 35, 16146 Genova, Italy
2 Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca via R. Cozzi 53 20125 Milano, Italy
@article{10_4064_cm118_1_2,
     author = {Andrea Carbonaro and Giancarlo Mauceri and Stefano Meda},
     title = {$H^1$ and  {BMO} for certain locally doubling
metric measure spaces of finite measure},
     journal = {Colloquium Mathematicum},
     pages = {13--41},
     publisher = {mathdoc},
     volume = {118},
     number = {1},
     year = {2010},
     doi = {10.4064/cm118-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-2/}
}
TY  - JOUR
AU  - Andrea Carbonaro
AU  - Giancarlo Mauceri
AU  - Stefano Meda
TI  - $H^1$ and  BMO for certain locally doubling
metric measure spaces of finite measure
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 13
EP  - 41
VL  - 118
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-2/
DO  - 10.4064/cm118-1-2
LA  - en
ID  - 10_4064_cm118_1_2
ER  - 
%0 Journal Article
%A Andrea Carbonaro
%A Giancarlo Mauceri
%A Stefano Meda
%T $H^1$ and  BMO for certain locally doubling
metric measure spaces of finite measure
%J Colloquium Mathematicum
%D 2010
%P 13-41
%V 118
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-2/
%R 10.4064/cm118-1-2
%G en
%F 10_4064_cm118_1_2
Andrea Carbonaro; Giancarlo Mauceri; Stefano Meda. $H^1$ and  BMO for certain locally doubling
metric measure spaces of finite measure. Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 13-41. doi : 10.4064/cm118-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-2/

Cité par Sources :