Very slowly varying functions. II
Colloquium Mathematicum, Tome 116 (2009) no. 1, pp. 105-117.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper is a sequel to papers by Ash, Erdős and Rubel, on very slowly varying functions, and by Bingham and Ostaszewski, on foundations of regular variation. We show that generalizations of the Ash–Erdős–Rubel approach—imposing growth restrictions on the function $h$, rather than regularity conditions such as measurability or the Baire property—lead naturally to the main result of regular variation, the Uniform Convergence Theorem.
DOI : 10.4064/cm116-1-5
Keywords: paper sequel papers ash erd rubel slowly varying functions bingham ostaszewski foundations regular variation generalizations ash erd rubel approach imposing growth restrictions function rather regularity conditions measurability baire property lead naturally main result regular variation uniform convergence theorem

N. H. Bingham 1 ; A. J. Ostaszewski 2

1 Mathematics Department Imperial College London London SW7 2AZ, UK
2 Mathematics Department London School of Economics Houghton Street London WC2A 2AE, UK
@article{10_4064_cm116_1_5,
     author = {N. H. Bingham and A. J. Ostaszewski},
     title = {Very slowly varying functions. {II}},
     journal = {Colloquium Mathematicum},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2009},
     doi = {10.4064/cm116-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-5/}
}
TY  - JOUR
AU  - N. H. Bingham
AU  - A. J. Ostaszewski
TI  - Very slowly varying functions. II
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 105
EP  - 117
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-5/
DO  - 10.4064/cm116-1-5
LA  - en
ID  - 10_4064_cm116_1_5
ER  - 
%0 Journal Article
%A N. H. Bingham
%A A. J. Ostaszewski
%T Very slowly varying functions. II
%J Colloquium Mathematicum
%D 2009
%P 105-117
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-5/
%R 10.4064/cm116-1-5
%G en
%F 10_4064_cm116_1_5
N. H. Bingham; A. J. Ostaszewski. Very slowly varying functions. II. Colloquium Mathematicum, Tome 116 (2009) no. 1, pp. 105-117. doi : 10.4064/cm116-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-5/

Cité par Sources :