Incidence coalgebras of intervally finite posets,
their integral quadratic forms and comodule categories
Colloquium Mathematicum, Tome 115 (2009) no. 2, pp. 259-295
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The incidence coalgebras $C = K^{\square} I$ of intervally finite posets $I$
and their comodules are studied by means of their Cartan
matrices and the Euler integral bilinear form
$b_C:\mathbb Z^{(I)}\times\mathbb Z^{(I)}\rightarrow \mathbb Z$. One of our main
results asserts that, under a suitable assumption on $I$, $C$ is an Euler
coalgebra with the Euler defect
$\partial_C:\mathbb Z^{(I)}\times\mathbb Z^{(I)}\rightarrow \mathbb Z$ zero and
$b_C ({\bf lgth}\, M,{\bf lgth}\, N) =\chi_C(M,N) $ for any pair of
indecomposable left $C$-comodules $M$ and $N$ of finite
$K$-dimension, where $\chi_C(M,N)$ is the
Euler characteristic of the pair $M$, $N$ and ${\bf lgth}\, M\in
\mathbb Z^{(I)}$ is the composition length vector. The
structure of minimal injective resolutions of simple left
$C$-comodules is described by means of the inverse
${\mathfrak C}_I^{-1}\in {\mathbb M}^\preceq_I(\mathbb Z)$ of the incidence matrix
${\mathfrak C}_I \in {\mathbb M}_I(\mathbb Z)$ of the poset $I$. Moreover, we describe the
Bass numbers $\mu^I_m(S_I(a), S_I(b))$, with $m\geq 0$, for
any simple $K^{\square} I$-comodules $S_I(a)$, $S_I(b)$ by means of
the coefficients of the $b$th row of
${\mathfrak C}_I^{-1}$. We also show that, for any poset $I$ of width two,
the Grothendieck group ${\bf K}_0(K^{\square} I\hbox{-\rm Comod}_{\rm fc})$ of the category
of finitely copresented $K^{\square} I$-comodules is generated by the
classes $[S_I(a)]$ of the simple comodules $S_I(a)$ and the classes
$[E_I(a)]$ of the injective covers $E_I(a)$ of $S_I(a)$, with $a\in I$.
Keywords:
incidence coalgebras square intervally finite posets their comodules studied means their cartan matrices euler integral bilinear form mathbb times mathbb rightarrow mathbb main results asserts under suitable assumption nbsp nbsp euler coalgebra euler defect partial mathbb times mathbb rightarrow mathbb zero lgth lgth chi pair indecomposable c comodules finite k dimension where chi euler characteristic pair nbsp lgth mathbb composition length vector structure minimal injective resolutions simple c comodules described means inverse mathfrak mathbb preceq mathbb incidence matrix mathfrak mathbb mathbb poset nbsp moreover describe bass numbers i geq simple square i comodules means coefficients bth row mathfrak poset width grothendieck group square hbox comod category finitely copresented square i comodules generated classes simple comodules classes injective covers
Affiliations des auteurs :
Daniel Simson 1
@article{10_4064_cm115_2_9,
author = {Daniel Simson},
title = {Incidence coalgebras of intervally finite posets,
their integral quadratic forms and comodule categories},
journal = {Colloquium Mathematicum},
pages = {259--295},
publisher = {mathdoc},
volume = {115},
number = {2},
year = {2009},
doi = {10.4064/cm115-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm115-2-9/}
}
TY - JOUR AU - Daniel Simson TI - Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories JO - Colloquium Mathematicum PY - 2009 SP - 259 EP - 295 VL - 115 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm115-2-9/ DO - 10.4064/cm115-2-9 LA - en ID - 10_4064_cm115_2_9 ER -
%0 Journal Article %A Daniel Simson %T Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories %J Colloquium Mathematicum %D 2009 %P 259-295 %V 115 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm115-2-9/ %R 10.4064/cm115-2-9 %G en %F 10_4064_cm115_2_9
Daniel Simson. Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories. Colloquium Mathematicum, Tome 115 (2009) no. 2, pp. 259-295. doi: 10.4064/cm115-2-9
Cité par Sources :