Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories
Colloquium Mathematicum, Tome 115 (2009) no. 2, pp. 259-295.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The incidence coalgebras $C = K^{\square} I$ of intervally finite posets $I$ and their comodules are studied by means of their Cartan matrices and the Euler integral bilinear form $b_C:\mathbb Z^{(I)}\times\mathbb Z^{(I)}\rightarrow \mathbb Z$. One of our main results asserts that, under a suitable assumption on $I$, $C$ is an Euler coalgebra with the Euler defect $\partial_C:\mathbb Z^{(I)}\times\mathbb Z^{(I)}\rightarrow \mathbb Z$ zero and $b_C ({\bf lgth}\, M,{\bf lgth}\, N) =\chi_C(M,N) $ for any pair of indecomposable left $C$-comodules $M$ and $N$ of finite $K$-dimension, where $\chi_C(M,N)$ is the Euler characteristic of the pair $M$, $N$ and ${\bf lgth}\, M\in \mathbb Z^{(I)}$ is the composition length vector. The structure of minimal injective resolutions of simple left $C$-comodules is described by means of the inverse ${\mathfrak C}_I^{-1}\in {\mathbb M}^\preceq_I(\mathbb Z)$ of the incidence matrix ${\mathfrak C}_I \in {\mathbb M}_I(\mathbb Z)$ of the poset $I$. Moreover, we describe the Bass numbers $\mu^I_m(S_I(a), S_I(b))$, with $m\geq 0$, for any simple $K^{\square} I$-comodules $S_I(a)$, $S_I(b)$ by means of the coefficients of the $b$th row of ${\mathfrak C}_I^{-1}$. We also show that, for any poset $I$ of width two, the Grothendieck group ${\bf K}_0(K^{\square} I\hbox{-\rm Comod}_{\rm fc})$ of the category of finitely copresented $K^{\square} I$-comodules is generated by the classes $[S_I(a)]$ of the simple comodules $S_I(a)$ and the classes $[E_I(a)]$ of the injective covers $E_I(a)$ of $S_I(a)$, with $a\in I$.
DOI : 10.4064/cm115-2-9
Keywords: incidence coalgebras square intervally finite posets their comodules studied means their cartan matrices euler integral bilinear form mathbb times mathbb rightarrow mathbb main results asserts under suitable assumption nbsp nbsp euler coalgebra euler defect partial mathbb times mathbb rightarrow mathbb zero lgth lgth chi pair indecomposable c comodules finite k dimension where chi euler characteristic pair nbsp lgth mathbb composition length vector structure minimal injective resolutions simple c comodules described means inverse mathfrak mathbb preceq mathbb incidence matrix mathfrak mathbb mathbb poset nbsp moreover describe bass numbers i geq simple square i comodules means coefficients bth row mathfrak poset width grothendieck group square hbox comod category finitely copresented square i comodules generated classes simple comodules classes injective covers

Daniel Simson 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm115_2_9,
     author = {Daniel Simson},
     title = {Incidence coalgebras of intervally finite posets,
 their integral quadratic forms and comodule categories},
     journal = {Colloquium Mathematicum},
     pages = {259--295},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {2009},
     doi = {10.4064/cm115-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm115-2-9/}
}
TY  - JOUR
AU  - Daniel Simson
TI  - Incidence coalgebras of intervally finite posets,
 their integral quadratic forms and comodule categories
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 259
EP  - 295
VL  - 115
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm115-2-9/
DO  - 10.4064/cm115-2-9
LA  - en
ID  - 10_4064_cm115_2_9
ER  - 
%0 Journal Article
%A Daniel Simson
%T Incidence coalgebras of intervally finite posets,
 their integral quadratic forms and comodule categories
%J Colloquium Mathematicum
%D 2009
%P 259-295
%V 115
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm115-2-9/
%R 10.4064/cm115-2-9
%G en
%F 10_4064_cm115_2_9
Daniel Simson. Incidence coalgebras of intervally finite posets,
 their integral quadratic forms and comodule categories. Colloquium Mathematicum, Tome 115 (2009) no. 2, pp. 259-295. doi : 10.4064/cm115-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm115-2-9/

Cité par Sources :