A hit-and-miss topology for $2^X$, $C_{n}(X)$ and $F_{n}(X)$
Colloquium Mathematicum, Tome 115 (2009) no. 1, pp. 47-64
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A hit-and-miss topology ($\tau_{\rm HM}$) is defined for the hyperspaces $2^X$, $%
C_n(X)$ and $F_n(X)$ of a continuum $X$. We study the relationship between $%
\tau_{\rm HM}$ and the Vietoris topology and we find conditions on $X$ for which
these topologies are equivalent.
Keywords:
hit and miss topology tau defined hyperspaces continuum study relationship between tau vietoris topology conditions which these topologies equivalent
Affiliations des auteurs :
Benjamín Espinoza 1 ; Verónica Martínez-de-la-Vega 2 ; Jorge M. Martínez-Montejano 2
@article{10_4064_cm115_1_6,
author = {Benjam{\'\i}n Espinoza and Ver\'onica Mart{\'\i}nez-de-la-Vega and Jorge M. Mart{\'\i}nez-Montejano},
title = {A hit-and-miss topology for $2^X$, $C_{n}(X)$ and $F_{n}(X)$},
journal = {Colloquium Mathematicum},
pages = {47--64},
publisher = {mathdoc},
volume = {115},
number = {1},
year = {2009},
doi = {10.4064/cm115-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-6/}
}
TY - JOUR
AU - Benjamín Espinoza
AU - Verónica Martínez-de-la-Vega
AU - Jorge M. Martínez-Montejano
TI - A hit-and-miss topology for $2^X$, $C_{n}(X)$ and $F_{n}(X)$
JO - Colloquium Mathematicum
PY - 2009
SP - 47
EP - 64
VL - 115
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-6/
DO - 10.4064/cm115-1-6
LA - en
ID - 10_4064_cm115_1_6
ER -
%0 Journal Article
%A Benjamín Espinoza
%A Verónica Martínez-de-la-Vega
%A Jorge M. Martínez-Montejano
%T A hit-and-miss topology for $2^X$, $C_{n}(X)$ and $F_{n}(X)$
%J Colloquium Mathematicum
%D 2009
%P 47-64
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-6/
%R 10.4064/cm115-1-6
%G en
%F 10_4064_cm115_1_6
Benjamín Espinoza; Verónica Martínez-de-la-Vega; Jorge M. Martínez-Montejano. A hit-and-miss topology for $2^X$, $C_{n}(X)$ and $F_{n}(X)$. Colloquium Mathematicum, Tome 115 (2009) no. 1, pp. 47-64. doi: 10.4064/cm115-1-6
Cité par Sources :