Orbit algebras and periodicity
Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 245-252.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given an object in a category, we study its orbit algebra with respect to an endofunctor. We show that if the object is periodic, then its orbit algebra modulo nilpotence is a polynomial ring in one variable. This specializes to a result on Ext-algebras of periodic modules over Gorenstein algebras. We also obtain a criterion for an algebra to be of wild representation type.
DOI : 10.4064/cm114-2-7
Keywords: given object category study its orbit algebra respect endofunctor object periodic its orbit algebra modulo nilpotence polynomial ring variable specializes result ext algebras periodic modules gorenstein algebras obtain criterion algebra wild representation type

Petter Andreas Bergh 1

1 Institutt for matematiske fag NTNU N-7491 Trondheim, Norway
@article{10_4064_cm114_2_7,
     author = {Petter Andreas Bergh},
     title = {Orbit algebras and periodicity},
     journal = {Colloquium Mathematicum},
     pages = {245--252},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2009},
     doi = {10.4064/cm114-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-7/}
}
TY  - JOUR
AU  - Petter Andreas Bergh
TI  - Orbit algebras and periodicity
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 245
EP  - 252
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-7/
DO  - 10.4064/cm114-2-7
LA  - en
ID  - 10_4064_cm114_2_7
ER  - 
%0 Journal Article
%A Petter Andreas Bergh
%T Orbit algebras and periodicity
%J Colloquium Mathematicum
%D 2009
%P 245-252
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-7/
%R 10.4064/cm114-2-7
%G en
%F 10_4064_cm114_2_7
Petter Andreas Bergh. Orbit algebras and periodicity. Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 245-252. doi : 10.4064/cm114-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-7/

Cité par Sources :