Orbit algebras and periodicity
Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 245-252
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given an object in a category, we study its orbit algebra with
respect to an endofunctor. We show that if the object is periodic,
then its orbit algebra modulo nilpotence is a polynomial ring in one
variable. This specializes to a result on Ext-algebras of
periodic modules over Gorenstein algebras. We also obtain a
criterion for an algebra to be of wild representation type.
Keywords:
given object category study its orbit algebra respect endofunctor object periodic its orbit algebra modulo nilpotence polynomial ring variable specializes result ext algebras periodic modules gorenstein algebras obtain criterion algebra wild representation type
Affiliations des auteurs :
Petter Andreas Bergh 1
@article{10_4064_cm114_2_7,
author = {Petter Andreas Bergh},
title = {Orbit algebras and periodicity},
journal = {Colloquium Mathematicum},
pages = {245--252},
publisher = {mathdoc},
volume = {114},
number = {2},
year = {2009},
doi = {10.4064/cm114-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-7/}
}
Petter Andreas Bergh. Orbit algebras and periodicity. Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 245-252. doi: 10.4064/cm114-2-7
Cité par Sources :