Linear derivations with rings of constants generated by linear forms
Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 279-286.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $k$ be a field. We describe all linear derivations $d$ of the polynomial algebra $k[x_1,\dots,x_m]$ such that the algebra of constants with respect to $d$ is generated by linear forms: (a) over $k$ in the case of $\mbox{char}\,k=0$, (b) over $k[x_1^p,\dots,x_m^p]$ in the case of $\mbox{char}\,k=p>0$.
DOI : 10.4064/cm113-2-9
Keywords: field describe linear derivations polynomial algebra dots algebra constants respect generated linear forms mbox char dots mbox char

Piotr J/edrzejewicz 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toru/n, Poland
@article{10_4064_cm113_2_9,
     author = {Piotr J/edrzejewicz},
     title = {Linear derivations with rings of constants
 generated by linear forms},
     journal = {Colloquium Mathematicum},
     pages = {279--286},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2008},
     doi = {10.4064/cm113-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-9/}
}
TY  - JOUR
AU  - Piotr J/edrzejewicz
TI  - Linear derivations with rings of constants
 generated by linear forms
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 279
EP  - 286
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-9/
DO  - 10.4064/cm113-2-9
LA  - en
ID  - 10_4064_cm113_2_9
ER  - 
%0 Journal Article
%A Piotr J/edrzejewicz
%T Linear derivations with rings of constants
 generated by linear forms
%J Colloquium Mathematicum
%D 2008
%P 279-286
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-9/
%R 10.4064/cm113-2-9
%G en
%F 10_4064_cm113_2_9
Piotr J/edrzejewicz. Linear derivations with rings of constants
 generated by linear forms. Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 279-286. doi : 10.4064/cm113-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-9/

Cité par Sources :