Linear derivations with rings of constants
generated by linear forms
Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 279-286
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $k$ be a field.
We describe all linear derivations $d$ of the polynomial algebra
$k[x_1,\dots,x_m]$ such that
the algebra of constants with respect to $d$ is generated by linear forms:
(a) over $k$ in the case of $\mbox{char}\,k=0$,
(b) over $k[x_1^p,\dots,x_m^p]$ in the case of $\mbox{char}\,k=p>0$.
Keywords:
field describe linear derivations polynomial algebra dots algebra constants respect generated linear forms mbox char dots mbox char
Affiliations des auteurs :
Piotr J/edrzejewicz 1
@article{10_4064_cm113_2_9,
author = {Piotr J/edrzejewicz},
title = {Linear derivations with rings of constants
generated by linear forms},
journal = {Colloquium Mathematicum},
pages = {279--286},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {2008},
doi = {10.4064/cm113-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-9/}
}
TY - JOUR AU - Piotr J/edrzejewicz TI - Linear derivations with rings of constants generated by linear forms JO - Colloquium Mathematicum PY - 2008 SP - 279 EP - 286 VL - 113 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-9/ DO - 10.4064/cm113-2-9 LA - en ID - 10_4064_cm113_2_9 ER -
Piotr J/edrzejewicz. Linear derivations with rings of constants generated by linear forms. Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 279-286. doi: 10.4064/cm113-2-9
Cité par Sources :