Probability that an element of a finite group has a
square root
Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 147-155
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a finite group of even order. We
give some bounds for the probability ${\rm p}(G)$ that a randomly
chosen element in $G$ has a square root. In particular, we prove
that ${\rm p}(G) \leq 1-{\lfloor \sqrt{|G|}\rfloor/|G|}$. Moreover,
we show that if the Sylow 2-subgroup of $G$ is not a proper normal
elementary abelian subgroup of $G$, then ${\rm p}(G) \le
1-1/\sqrt{|G|}$. Both of these bounds are best possible upper bounds
for ${\rm p}(G)$, depending only on the order of $G$.
Keywords:
finite group even order bounds probability randomly chosen element has square root particular prove leq lfloor sqrt rfloor moreover sylow subgroup proper normal elementary abelian subgroup sqrt these bounds best possible upper bounds depending only order nbsp
Affiliations des auteurs :
M. S. Lucido 1 ; M. R. Pournaki 2
@article{10_4064_cm112_1_7,
author = {M. S. Lucido and M. R. Pournaki},
title = {Probability that an element of a finite group has a
square root},
journal = {Colloquium Mathematicum},
pages = {147--155},
publisher = {mathdoc},
volume = {112},
number = {1},
year = {2008},
doi = {10.4064/cm112-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-7/}
}
TY - JOUR AU - M. S. Lucido AU - M. R. Pournaki TI - Probability that an element of a finite group has a square root JO - Colloquium Mathematicum PY - 2008 SP - 147 EP - 155 VL - 112 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-7/ DO - 10.4064/cm112-1-7 LA - en ID - 10_4064_cm112_1_7 ER -
M. S. Lucido; M. R. Pournaki. Probability that an element of a finite group has a square root. Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 147-155. doi: 10.4064/cm112-1-7
Cité par Sources :