$C(X)$ vs. $C(X)$ modulo its socle
Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 315-336.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $C_F(X)$ be the socle of $C(X)$. It is shown that each prime ideal in ${C(X)}/{C_F(X)}$ is essential. For each $h\in C(X)$, we prove that every prime ideal (resp. z-ideal) of ${C(X)}/{(h)}$ is essential if and only if the set $Z(h)$ of zeros of $h$ contains no isolated points (resp. $\mathop{\rm int}\nolimits Z(h)=\emptyset$). It is proved that $\dim ({C(X)}/{C_F(X)}) \geq \dim C(X)$, where $\dim C(X)$ denotes the Goldie dimension of $C(X)$, and the inequality may be strict. We also give an algebraic characterization of compact spaces with at most a countable number of nonisolated points. For each essential ideal $E$ in $C(X)$, we observe that ${E}/{C_F(X)}$ is essential in ${C(X)}/{C_F(X)}$ if and only if the set of isolated points of $X$ is finite. Finally, we characterize topological spaces $X$ for which the Jacobson radical of ${C(X)}/{C_F(X)}$ is zero, and as a consequence we observe that the cardinality of a discrete space $X$ is nonmeasurable if and only if $\upsilon X$, the realcompactification of $X$, is first countable.
DOI : 10.4064/cm111-2-9
Mots-clés : socle shown each prime ideal essential each prove every prime ideal resp z ideal essential only set zeros contains isolated points resp mathop int nolimits emptyset proved dim geq dim where dim denotes goldie dimension inequality may strict algebraic characterization compact spaces countable number nonisolated points each essential ideal observe essential only set isolated points finite finally characterize topological spaces which jacobson radical zero consequence observe cardinality discrete space nonmeasurable only upsilon realcompactification nbsp first countable

F. Azarpanah 1 ; O. A. S. Karamzadeh 1 ; S. Rahmati 1

1 Department of Mathematics Chamran University Ahvaz, Iran
@article{10_4064_cm111_2_9,
     author = {F. Azarpanah and O. A. S. Karamzadeh and S. Rahmati},
     title = {$C(X)$ vs. $C(X)$ modulo its socle},
     journal = {Colloquium Mathematicum},
     pages = {315--336},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2008},
     doi = {10.4064/cm111-2-9},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-9/}
}
TY  - JOUR
AU  - F. Azarpanah
AU  - O. A. S. Karamzadeh
AU  - S. Rahmati
TI  - $C(X)$ vs. $C(X)$ modulo its socle
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 315
EP  - 336
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-9/
DO  - 10.4064/cm111-2-9
LA  - fr
ID  - 10_4064_cm111_2_9
ER  - 
%0 Journal Article
%A F. Azarpanah
%A O. A. S. Karamzadeh
%A S. Rahmati
%T $C(X)$ vs. $C(X)$ modulo its socle
%J Colloquium Mathematicum
%D 2008
%P 315-336
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-9/
%R 10.4064/cm111-2-9
%G fr
%F 10_4064_cm111_2_9
F. Azarpanah; O. A. S. Karamzadeh; S. Rahmati. $C(X)$ vs. $C(X)$ modulo its socle. Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 315-336. doi : 10.4064/cm111-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-9/

Cité par Sources :