$C(X)$ vs. $C(X)$ modulo its socle
Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 315-336
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $C_F(X)$ be the socle of $C(X)$. It is shown that each prime
ideal in ${C(X)}/{C_F(X)}$ is essential. For each $h\in
C(X)$, we prove that every prime ideal (resp. z-ideal) of
${C(X)}/{(h)}$ is essential if and only if the set $Z(h)$ of zeros of $h$
contains no
isolated points (resp. $\mathop{\rm int}\nolimits Z(h)=\emptyset$). It is proved that $\dim
({C(X)}/{C_F(X)}) \geq \dim C(X)$, where $\dim C(X)$ denotes the Goldie dimension of $C(X)$,
and the inequality may be strict. We also give an algebraic characterization of compact spaces with at most a
countable number of nonisolated points. For each
essential ideal $E$ in $C(X)$, we observe that ${E}/{C_F(X)}$ is
essential in ${C(X)}/{C_F(X)}$ if and only if the set of
isolated points of $X$ is finite. Finally, we characterize
topological spaces $X$ for which the Jacobson radical of
${C(X)}/{C_F(X)}$ is zero, and as a consequence we observe
that the cardinality of a discrete space $X$ is nonmeasurable if
and only if $\upsilon X$, the realcompactification of $X$, is first countable.
Mots-clés :
socle shown each prime ideal essential each prove every prime ideal resp z ideal essential only set zeros contains isolated points resp mathop int nolimits emptyset proved dim geq dim where dim denotes goldie dimension inequality may strict algebraic characterization compact spaces countable number nonisolated points each essential ideal observe essential only set isolated points finite finally characterize topological spaces which jacobson radical zero consequence observe cardinality discrete space nonmeasurable only upsilon realcompactification nbsp first countable
Affiliations des auteurs :
F. Azarpanah 1 ; O. A. S. Karamzadeh 1 ; S. Rahmati 1
@article{10_4064_cm111_2_9,
author = {F. Azarpanah and O. A. S. Karamzadeh and S. Rahmati},
title = {$C(X)$ vs. $C(X)$ modulo its socle},
journal = {Colloquium Mathematicum},
pages = {315--336},
publisher = {mathdoc},
volume = {111},
number = {2},
year = {2008},
doi = {10.4064/cm111-2-9},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-9/}
}
TY - JOUR AU - F. Azarpanah AU - O. A. S. Karamzadeh AU - S. Rahmati TI - $C(X)$ vs. $C(X)$ modulo its socle JO - Colloquium Mathematicum PY - 2008 SP - 315 EP - 336 VL - 111 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-9/ DO - 10.4064/cm111-2-9 LA - fr ID - 10_4064_cm111_2_9 ER -
F. Azarpanah; O. A. S. Karamzadeh; S. Rahmati. $C(X)$ vs. $C(X)$ modulo its socle. Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 315-336. doi: 10.4064/cm111-2-9
Cité par Sources :