The multiplicity problem for indecomposable decompositions of modules over domestic canonical algebras
Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 221-282.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a module $M$ over a domestic canonical algebra ${\mit\Lambda}$ and a classifying set $ \boldsymbol{X}$ for the indecomposable ${\mit\Lambda}$-modules, the problem of determining the vector $ m(M)=(m_x)_{x\in {\boldsymbol{X}}}\in {\mathbb N}^{\boldsymbol{X}}$ such that $M\cong \bigoplus_{x\in \boldsymbol{X}} X_x^{m_x}$ is studied. A precise formula for $\mathop{\rm dim}\nolimits_k\mathop{\rm Hom}_{\mit\Lambda}(M,X)$, for any postprojective indecomposable module $X$, is computed in Theorem 2.3, and interrelations between various structures on the set of all postprojective roots are described in Theorem 2.4. It is proved in Theorem 2.2 that a general method of finding vectors $ m(M)$ presented by the authors in Colloq. Math. 107 (2007) leads to algorithms with the complexity ${\cal O}((\mathop{\rm dim}\nolimits_k M)^4)$. A precise description of algorithms determining the multiplicities $m(M)_x$ for postprojective roots $x\in \boldsymbol{X}$ is given (Algorithms 6.1, 6.2 and 6.3).
DOI : 10.4064/cm111-2-6
Keywords: given module domestic canonical algebra mit lambda classifying set boldsymbol indecomposable mit lambda modules problem determining vector boldsymbol mathbb boldsymbol cong bigoplus boldsymbol studied precise formula mathop dim nolimits mathop hom mit lambda postprojective indecomposable module computed theorem interrelations between various structures set postprojective roots described theorem proved theorem general method finding vectors presented authors colloq math leads algorithms complexity cal mathop dim nolimits precise description algorithms determining multiplicities postprojective roots boldsymbol given algorithms nbsp nbsp nbsp

Piotr Dowbor 1 ; Andrzej Mróz 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toru/n, Poland
@article{10_4064_cm111_2_6,
     author = {Piotr Dowbor and Andrzej Mr\'oz},
     title = {The multiplicity problem for
indecomposable decompositions of modules over
 domestic canonical algebras},
     journal = {Colloquium Mathematicum},
     pages = {221--282},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2008},
     doi = {10.4064/cm111-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-6/}
}
TY  - JOUR
AU  - Piotr Dowbor
AU  - Andrzej Mróz
TI  - The multiplicity problem for
indecomposable decompositions of modules over
 domestic canonical algebras
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 221
EP  - 282
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-6/
DO  - 10.4064/cm111-2-6
LA  - en
ID  - 10_4064_cm111_2_6
ER  - 
%0 Journal Article
%A Piotr Dowbor
%A Andrzej Mróz
%T The multiplicity problem for
indecomposable decompositions of modules over
 domestic canonical algebras
%J Colloquium Mathematicum
%D 2008
%P 221-282
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-6/
%R 10.4064/cm111-2-6
%G en
%F 10_4064_cm111_2_6
Piotr Dowbor; Andrzej Mróz. The multiplicity problem for
indecomposable decompositions of modules over
 domestic canonical algebras. Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 221-282. doi : 10.4064/cm111-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-6/

Cité par Sources :