The multiplicity problem for
indecomposable decompositions of modules over
domestic canonical algebras
Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 221-282
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given a module $M$ over a domestic
canonical algebra ${\mit\Lambda}$ and a
classifying set $ \boldsymbol{X}$ for the
indecomposable ${\mit\Lambda}$-modules, the problem of determining
the vector $ m(M)=(m_x)_{x\in {\boldsymbol{X}}}\in {\mathbb N}^{\boldsymbol{X}}$ such that
$M\cong \bigoplus_{x\in \boldsymbol{X}} X_x^{m_x}$
is
studied. A precise
formula for
$\mathop{\rm dim}\nolimits_k\mathop{\rm Hom}_{\mit\Lambda}(M,X)$, for any
postprojective
indecomposable module
$X$,
is computed in Theorem 2.3,
and interrelations between
various structures on the set
of all postprojective roots
are described in Theorem
2.4. It is proved in Theorem
2.2 that a
general
method of finding
vectors $
m(M)$ presented
by the authors in Colloq. Math. 107 (2007)
leads to algorithms with
the complexity ${\cal O}((\mathop{\rm dim}\nolimits_k M)^4)$.
A precise description of
algorithms determining the
multiplicities $m(M)_x$ for
postprojective roots $x\in
\boldsymbol{X}$ is given
(Algorithms 6.1, 6.2 and 6.3).
Keywords:
given module domestic canonical algebra mit lambda classifying set boldsymbol indecomposable mit lambda modules problem determining vector boldsymbol mathbb boldsymbol cong bigoplus boldsymbol studied precise formula mathop dim nolimits mathop hom mit lambda postprojective indecomposable module computed theorem interrelations between various structures set postprojective roots described theorem proved theorem general method finding vectors presented authors colloq math leads algorithms complexity cal mathop dim nolimits precise description algorithms determining multiplicities postprojective roots boldsymbol given algorithms nbsp nbsp nbsp
Affiliations des auteurs :
Piotr Dowbor 1 ; Andrzej Mróz 1
@article{10_4064_cm111_2_6,
author = {Piotr Dowbor and Andrzej Mr\'oz},
title = {The multiplicity problem for
indecomposable decompositions of modules over
domestic canonical algebras},
journal = {Colloquium Mathematicum},
pages = {221--282},
publisher = {mathdoc},
volume = {111},
number = {2},
year = {2008},
doi = {10.4064/cm111-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-6/}
}
TY - JOUR AU - Piotr Dowbor AU - Andrzej Mróz TI - The multiplicity problem for indecomposable decompositions of modules over domestic canonical algebras JO - Colloquium Mathematicum PY - 2008 SP - 221 EP - 282 VL - 111 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-6/ DO - 10.4064/cm111-2-6 LA - en ID - 10_4064_cm111_2_6 ER -
%0 Journal Article %A Piotr Dowbor %A Andrzej Mróz %T The multiplicity problem for indecomposable decompositions of modules over domestic canonical algebras %J Colloquium Mathematicum %D 2008 %P 221-282 %V 111 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-6/ %R 10.4064/cm111-2-6 %G en %F 10_4064_cm111_2_6
Piotr Dowbor; Andrzej Mróz. The multiplicity problem for indecomposable decompositions of modules over domestic canonical algebras. Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 221-282. doi: 10.4064/cm111-2-6
Cité par Sources :