A note on the theorems of Lusternik–Schnirelmann and Borsuk–Ulam
Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 35-42
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $p$ be a prime number and $X$ a simply connected Hausdorff space equipped with a free $\mathbb Z_p$-action generated by $f_p:X\rightarrow X$. Let $\alpha:S^{2n-1}\rightarrow S^{2n-1}$ be a homeomorphism generating a free $\mathbb Z_p$-action on the $(2n-1)$-sphere, whose orbit space is some lens space. We prove that, under some homotopy conditions on $X$, there exists an equivariant map $F:(S^{2n-1},\alpha)\rightarrow (X,f_p)$. As applications, we derive new versions of generalized Lusternik–Schnirelmann and Borsuk–Ulam theorems.
Mots-clés :
prime number simply connected hausdorff space equipped mathbb p action generated rightarrow alpha n rightarrow n homeomorphism generating mathbb p action n sphere whose orbit space lens space prove under homotopy conditions there exists equivariant map n alpha rightarrow applications derive versions generalized lusternik schnirelmann borsuk ulam theorems
Affiliations des auteurs :
T. E. Barros 1 ; C. Biasi 2
@article{10_4064_cm111_1_3,
author = {T. E. Barros and C. Biasi},
title = {A note on the theorems of {Lusternik{\textendash}Schnirelmann} and {Borsuk{\textendash}Ulam}},
journal = {Colloquium Mathematicum},
pages = {35--42},
publisher = {mathdoc},
volume = {111},
number = {1},
year = {2008},
doi = {10.4064/cm111-1-3},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-3/}
}
TY - JOUR AU - T. E. Barros AU - C. Biasi TI - A note on the theorems of Lusternik–Schnirelmann and Borsuk–Ulam JO - Colloquium Mathematicum PY - 2008 SP - 35 EP - 42 VL - 111 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-3/ DO - 10.4064/cm111-1-3 LA - de ID - 10_4064_cm111_1_3 ER -
T. E. Barros; C. Biasi. A note on the theorems of Lusternik–Schnirelmann and Borsuk–Ulam. Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 35-42. doi: 10.4064/cm111-1-3
Cité par Sources :