Coarse structures and group actions
Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 149-158
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The main results of the paper are:
Proposition 0.1.
A group $G$ acting coarsely on a coarse space $(X,{\mathcal{C}})$ induces a
coarse equivalence $g\mapsto g\cdot x_0$ from $G$ to $X$ for any
$x_0\in X$.Theorem 0.2.
Two coarse structures ${\mathcal{C}}_1$ and ${\mathcal{C}}_2$ on the same set
$X$ are equivalent if the following conditions are satisfied:
(1) Bounded sets in ${\mathcal{C}}_1$ are identical with bounded sets in ${\mathcal{C}}_2$.
(2) There is a coarse action $\phi_1$ of a group $G_1$
on $(X,{\mathcal{C}}_1)$ and a coarse action $\phi_2$ of a group $G_2$ on $(X,{\mathcal{C}}_2)$
such that $\phi_1$ commutes with $\phi_2$.They generalize the following two basic results of coarse
geometry:Proposition 0.3 (Shvarts–Milnor lemma [5, Theorem 1.18]).
A group $G$ acting properly and cocompactly via isometries on a
length space $X$ is finitely generated and induces a
quasi-isometry equivalence $g\mapsto g\cdot x_0$ from $G$ to $X$ for
any $x_0\in X$.Theorem 0.4 (Gromov [4, p. 6]).
Two finitely generated groups $G$ and $H$ are quasi-isometric if
and only if there is a locally compact space $X$ admitting proper
and cocompact actions of both $G$ and $H$ that commute.
Keywords:
main results paper proposition group acting coarsely coarse space mathcal induces coarse equivalence mapsto cdot theorem coarse structures mathcal mathcal set equivalent following conditions satisfied bounded sets mathcal identical bounded sets mathcal there coarse action phi group mathcal coarse action phi group mathcal phi commutes phi generalize following basic results coarse geometry proposition shvarts milnor lemma theorem group acting properly cocompactly via isometries length space finitely generated induces quasi isometry equivalence mapsto cdot theorem gromov finitely generated groups quasi isometric only there locally compact space admitting proper cocompact actions commute
Affiliations des auteurs :
N. Brodskiy 1 ; J. Dydak 1 ; A. Mitra 1
@article{10_4064_cm111_1_13,
author = {N. Brodskiy and J. Dydak and A. Mitra},
title = {Coarse structures and group actions},
journal = {Colloquium Mathematicum},
pages = {149--158},
publisher = {mathdoc},
volume = {111},
number = {1},
year = {2008},
doi = {10.4064/cm111-1-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-13/}
}
TY - JOUR AU - N. Brodskiy AU - J. Dydak AU - A. Mitra TI - Coarse structures and group actions JO - Colloquium Mathematicum PY - 2008 SP - 149 EP - 158 VL - 111 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-13/ DO - 10.4064/cm111-1-13 LA - en ID - 10_4064_cm111_1_13 ER -
N. Brodskiy; J. Dydak; A. Mitra. Coarse structures and group actions. Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 149-158. doi: 10.4064/cm111-1-13
Cité par Sources :