Weak amenability of general measure algebras
Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 1-9.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the weak amenability of a general measure algebra $M(X)$ on a locally compact space $X$. First we show that not all general measure multiplications are separately weak$^*$ continuous; moreover, under certain conditions, weak amenability of $M(X)^{**}$ implies weak amenability of $M(X)$. The main result of this paper states that there is a general measure algebra $M(X)$ such that $M(X)$ and $M(X)^{**}$ are weakly amenable without $X$ being a discrete topological space.
DOI : 10.4064/cm111-1-1
Keywords: study weak amenability general measure algebra locally compact space first general measure multiplications separately weak * continuous moreover under certain conditions weak amenability ** implies weak amenability main result paper states there general measure algebra ** weakly amenable without being discrete topological space

Javad Laali 1 ; Mina Ettefagh 2

1 Department of Mathematics Tarbiat Moallem University 599 Taleghani Avenue Tehran 15614, Iran
2 Department of Mathematics Tabriz Islamic Azad University Tabriz, Iran
@article{10_4064_cm111_1_1,
     author = {Javad Laali and Mina Ettefagh},
     title = {Weak amenability of general measure algebras},
     journal = {Colloquium Mathematicum},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2008},
     doi = {10.4064/cm111-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-1/}
}
TY  - JOUR
AU  - Javad Laali
AU  - Mina Ettefagh
TI  - Weak amenability of general measure algebras
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 1
EP  - 9
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-1/
DO  - 10.4064/cm111-1-1
LA  - en
ID  - 10_4064_cm111_1_1
ER  - 
%0 Journal Article
%A Javad Laali
%A Mina Ettefagh
%T Weak amenability of general measure algebras
%J Colloquium Mathematicum
%D 2008
%P 1-9
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-1/
%R 10.4064/cm111-1-1
%G en
%F 10_4064_cm111_1_1
Javad Laali; Mina Ettefagh. Weak amenability of general measure algebras. Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 1-9. doi : 10.4064/cm111-1-1. http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-1/

Cité par Sources :