Which Bernoulli measures are good measures?
Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 243-291.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For measures on a Cantor space, the demand that the measure be “good” is a useful homogeneity condition. We examine the question of when a Bernoulli measure on the sequence space for an alphabet of size $n$ is good. Complete answers are given for the $n = 2$ cases and the rational cases. Partial results are obtained for the general cases.
DOI : 10.4064/cm110-2-2
Keywords: measures cantor space demand measure useful homogeneity condition examine question bernoulli measure sequence space alphabet size complete answers given cases rational cases partial results obtained general cases

Ethan Akin 1 ; Randall Dougherty 2 ; R. Daniel Mauldin 3 ; Andrew Yingst 4

1 Mathematics Department The City College 137 Street and Convent Avenue New York City, NY 10031, U.S.A.
2 IDA Center for Communications Research 4320 Westerra Ct. San Diego, CA 92121, U.S.A.
3 Department of Mathematics University of North Texas P.O. Box 311430 Denton, TX 76203, U.S.A.
4 Department of Mathematics University of South Carolina Columbia, SC 29208, U.S.A.
@article{10_4064_cm110_2_2,
     author = {Ethan Akin and Randall Dougherty and R. Daniel Mauldin and Andrew Yingst},
     title = {Which {Bernoulli} measures are good measures?},
     journal = {Colloquium Mathematicum},
     pages = {243--291},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2008},
     doi = {10.4064/cm110-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-2/}
}
TY  - JOUR
AU  - Ethan Akin
AU  - Randall Dougherty
AU  - R. Daniel Mauldin
AU  - Andrew Yingst
TI  - Which Bernoulli measures are good measures?
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 243
EP  - 291
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-2/
DO  - 10.4064/cm110-2-2
LA  - en
ID  - 10_4064_cm110_2_2
ER  - 
%0 Journal Article
%A Ethan Akin
%A Randall Dougherty
%A R. Daniel Mauldin
%A Andrew Yingst
%T Which Bernoulli measures are good measures?
%J Colloquium Mathematicum
%D 2008
%P 243-291
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-2/
%R 10.4064/cm110-2-2
%G en
%F 10_4064_cm110_2_2
Ethan Akin; Randall Dougherty; R. Daniel Mauldin; Andrew Yingst. Which Bernoulli measures are good measures?. Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 243-291. doi : 10.4064/cm110-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-2/

Cité par Sources :