Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Ethan Akin 1 ; Randall Dougherty 2 ; R. Daniel Mauldin 3 ; Andrew Yingst 4
@article{10_4064_cm110_2_2, author = {Ethan Akin and Randall Dougherty and R. Daniel Mauldin and Andrew Yingst}, title = {Which {Bernoulli} measures are good measures?}, journal = {Colloquium Mathematicum}, pages = {243--291}, publisher = {mathdoc}, volume = {110}, number = {2}, year = {2008}, doi = {10.4064/cm110-2-2}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-2/} }
TY - JOUR AU - Ethan Akin AU - Randall Dougherty AU - R. Daniel Mauldin AU - Andrew Yingst TI - Which Bernoulli measures are good measures? JO - Colloquium Mathematicum PY - 2008 SP - 243 EP - 291 VL - 110 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-2/ DO - 10.4064/cm110-2-2 LA - en ID - 10_4064_cm110_2_2 ER -
%0 Journal Article %A Ethan Akin %A Randall Dougherty %A R. Daniel Mauldin %A Andrew Yingst %T Which Bernoulli measures are good measures? %J Colloquium Mathematicum %D 2008 %P 243-291 %V 110 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-2/ %R 10.4064/cm110-2-2 %G en %F 10_4064_cm110_2_2
Ethan Akin; Randall Dougherty; R. Daniel Mauldin; Andrew Yingst. Which Bernoulli measures are good measures?. Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 243-291. doi : 10.4064/cm110-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-2/
Cité par Sources :