Which Bernoulli measures are good measures?
Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 243-291
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For measures on a Cantor space, the demand that the measure be “good” is a useful homogeneity condition. We examine the question of when a Bernoulli measure on the sequence space for an alphabet of size $n$ is good. Complete answers are given for the $n = 2$ cases and the rational cases. Partial results are obtained for the general cases.
Keywords:
measures cantor space demand measure useful homogeneity condition examine question bernoulli measure sequence space alphabet size complete answers given cases rational cases partial results obtained general cases
Affiliations des auteurs :
Ethan Akin 1 ; Randall Dougherty 2 ; R. Daniel Mauldin 3 ; Andrew Yingst 4
@article{10_4064_cm110_2_2,
author = {Ethan Akin and Randall Dougherty and R. Daniel Mauldin and Andrew Yingst},
title = {Which {Bernoulli} measures are good measures?},
journal = {Colloquium Mathematicum},
pages = {243--291},
publisher = {mathdoc},
volume = {110},
number = {2},
year = {2008},
doi = {10.4064/cm110-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-2/}
}
TY - JOUR AU - Ethan Akin AU - Randall Dougherty AU - R. Daniel Mauldin AU - Andrew Yingst TI - Which Bernoulli measures are good measures? JO - Colloquium Mathematicum PY - 2008 SP - 243 EP - 291 VL - 110 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-2/ DO - 10.4064/cm110-2-2 LA - en ID - 10_4064_cm110_2_2 ER -
%0 Journal Article %A Ethan Akin %A Randall Dougherty %A R. Daniel Mauldin %A Andrew Yingst %T Which Bernoulli measures are good measures? %J Colloquium Mathematicum %D 2008 %P 243-291 %V 110 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-2/ %R 10.4064/cm110-2-2 %G en %F 10_4064_cm110_2_2
Ethan Akin; Randall Dougherty; R. Daniel Mauldin; Andrew Yingst. Which Bernoulli measures are good measures?. Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 243-291. doi: 10.4064/cm110-2-2
Cité par Sources :