Mixing via families for measure preserving transformations
Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 151-165.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In topological dynamics a theory of recurrence properties via (Furstenberg) families was established in the recent years. In the current paper we aim to establish a corresponding theory of ergodicity via families in measurable dynamical systems (MDS). For a family $\mathcal{F}$ (of subsets of $\mathbb Z_+$) and a MDS $(X,\mathcal{B}, \mu, T)$, several notions of ergodicity related to $\mathcal{F}$ are introduced, and characterized via the weak topology in the induced Hilbert space $L^2(\mu)$.$T$ is $\mathcal{F}$-convergence ergodic of order $k$ if for any $A_0,\ldots,A_{k}$ of positive measure, $0=e_0 \cdots e_k$ and $\varepsilon>0$, $\{n\in {\mathbb Z}_+:|\mu(\bigcap_{i=0}^k T^{-ne_i}A_i)-\prod_{i=0}^k\mu(A_i)| \varepsilon\}\in\mathcal{F}.$ It is proved that the following statements are equivalent: (1) $T$ is $\Delta^*$-convergence ergodic of order 1; (2) $T$ is strongly mixing; (3) $T$ is $\Delta^*$-convergence ergodic of order 2. Here $\Delta^*$ is the dual family of the family of difference sets.
DOI : 10.4064/cm110-1-5
Keywords: topological dynamics theory recurrence properties via furstenberg families established recent years current paper establish corresponding theory ergodicity via families measurable dynamical systems mds family mathcal subsets mathbb mds mathcal several notions ergodicity related mathcal introduced characterized via weak topology induced hilbert space nbsp mathcal convergence ergodic order ldots positive measure cdots varepsilon mathbb bigcap ne prod varepsilon mathcal proved following statements equivalent nbsp delta * convergence ergodic order nbsp strongly mixing nbsp delta * convergence ergodic order nbsp here delta * dual family family difference sets

Rui Kuang 1 ; Xiangdong Ye 1

1 Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026, P.R. China
@article{10_4064_cm110_1_5,
     author = {Rui Kuang and Xiangdong Ye},
     title = {Mixing via families for measure preserving transformations},
     journal = {Colloquium Mathematicum},
     pages = {151--165},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2008},
     doi = {10.4064/cm110-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-5/}
}
TY  - JOUR
AU  - Rui Kuang
AU  - Xiangdong Ye
TI  - Mixing via families for measure preserving transformations
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 151
EP  - 165
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-5/
DO  - 10.4064/cm110-1-5
LA  - en
ID  - 10_4064_cm110_1_5
ER  - 
%0 Journal Article
%A Rui Kuang
%A Xiangdong Ye
%T Mixing via families for measure preserving transformations
%J Colloquium Mathematicum
%D 2008
%P 151-165
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-5/
%R 10.4064/cm110-1-5
%G en
%F 10_4064_cm110_1_5
Rui Kuang; Xiangdong Ye. Mixing via families for measure preserving transformations. Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 151-165. doi : 10.4064/cm110-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-5/

Cité par Sources :