Some remarks on Hilbert–Speiser and Leopoldt fields of given type
Colloquium Mathematicum, Tome 108 (2007) no. 2, pp. 217-223.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p$ be a rational prime, $G$ a group of order $p$, and $K$ a number field containing a primitive $p$th root of unity. We show that every tamely ramified Galois extension of $K$ with Galois group isomorphic to $G$ has a normal integral basis if and only if for every Galois extension $L/K$ with Galois group isomorphic to $G$, the ring of integers $O_L$ in $L$ is free as a module over the associated order ${\cal A}_{L/K}$. We also give examples, some of which show that this result can still hold without the assumption that $K$ contains a primitive $p$th root of unity.
DOI : 10.4064/cm108-2-5
Keywords: rational prime group order number field containing primitive pth root unity every tamely ramified galois extension galois group isomorphic nbsp has normal integral basis only every galois extension galois group isomorphic nbsp ring integers nbsp module associated order cal examples which result still without assumption contains primitive pth root unity

James E. Carter 1

1 Department of Mathematics College of Charleston 66 George Street Charleston, SC 29424-0001, U.S.A.
@article{10_4064_cm108_2_5,
     author = {James E. Carter},
     title = {Some remarks  on {Hilbert{\textendash}Speiser} and
 {Leopoldt} fields of given type},
     journal = {Colloquium Mathematicum},
     pages = {217--223},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {2007},
     doi = {10.4064/cm108-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-5/}
}
TY  - JOUR
AU  - James E. Carter
TI  - Some remarks  on Hilbert–Speiser and
 Leopoldt fields of given type
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 217
EP  - 223
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-5/
DO  - 10.4064/cm108-2-5
LA  - en
ID  - 10_4064_cm108_2_5
ER  - 
%0 Journal Article
%A James E. Carter
%T Some remarks  on Hilbert–Speiser and
 Leopoldt fields of given type
%J Colloquium Mathematicum
%D 2007
%P 217-223
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-5/
%R 10.4064/cm108-2-5
%G en
%F 10_4064_cm108_2_5
James E. Carter. Some remarks  on Hilbert–Speiser and
 Leopoldt fields of given type. Colloquium Mathematicum, Tome 108 (2007) no. 2, pp. 217-223. doi : 10.4064/cm108-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-5/

Cité par Sources :