Some remarks on Hilbert–Speiser and
Leopoldt fields of given type
Colloquium Mathematicum, Tome 108 (2007) no. 2, pp. 217-223
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $p$ be a rational prime, $G$ a group of order $p$, and $K$ a number
field containing a primitive $p$th root of unity. We show that every
tamely ramified Galois extension of $K$ with Galois group isomorphic
to $G$ has a normal integral basis if and only if for every Galois
extension $L/K$ with Galois group isomorphic to $G$, the ring of
integers $O_L$ in $L$ is free as a module over the associated
order ${\cal A}_{L/K}$. We also give examples, some of which show
that this result can still hold without the assumption that $K$ contains
a primitive $p$th root of unity.
Keywords:
rational prime group order number field containing primitive pth root unity every tamely ramified galois extension galois group isomorphic nbsp has normal integral basis only every galois extension galois group isomorphic nbsp ring integers nbsp module associated order cal examples which result still without assumption contains primitive pth root unity
Affiliations des auteurs :
James E. Carter 1
@article{10_4064_cm108_2_5,
author = {James E. Carter},
title = {Some remarks on {Hilbert{\textendash}Speiser} and
{Leopoldt} fields of given type},
journal = {Colloquium Mathematicum},
pages = {217--223},
publisher = {mathdoc},
volume = {108},
number = {2},
year = {2007},
doi = {10.4064/cm108-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-5/}
}
TY - JOUR AU - James E. Carter TI - Some remarks on Hilbert–Speiser and Leopoldt fields of given type JO - Colloquium Mathematicum PY - 2007 SP - 217 EP - 223 VL - 108 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-5/ DO - 10.4064/cm108-2-5 LA - en ID - 10_4064_cm108_2_5 ER -
James E. Carter. Some remarks on Hilbert–Speiser and Leopoldt fields of given type. Colloquium Mathematicum, Tome 108 (2007) no. 2, pp. 217-223. doi: 10.4064/cm108-2-5
Cité par Sources :