Hypersurfaces with almost complex structures in the real affine space
Colloquium Mathematicum, Tome 108 (2007) no. 2, pp. 329-338.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study affine hypersurface immersions $f: M \rightarrow {\mathbb R}^{2n+1}$, where $M$ is an almost complex $n$-dimensional manifold. The main purpose is to give a condition for ($M,J$) to be a special Kähler manifold with respect to the Levi-Civita connection of an affine fundamental form.
DOI : 10.4064/cm108-2-14
Keywords: study affine hypersurface immersions rightarrow mathbb where almost complex n dimensional manifold main purpose condition special hler manifold respect levi civita connection affine fundamental form

Mayuko Kon 1

1 Department of Mathematics Hokkaido University Kita 10 Nishi 8, Sapporo 060-0810, Japan
@article{10_4064_cm108_2_14,
     author = {Mayuko Kon},
     title = {Hypersurfaces with almost complex structures in the real affine space},
     journal = {Colloquium Mathematicum},
     pages = {329--338},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {2007},
     doi = {10.4064/cm108-2-14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-14/}
}
TY  - JOUR
AU  - Mayuko Kon
TI  - Hypersurfaces with almost complex structures in the real affine space
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 329
EP  - 338
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-14/
DO  - 10.4064/cm108-2-14
LA  - en
ID  - 10_4064_cm108_2_14
ER  - 
%0 Journal Article
%A Mayuko Kon
%T Hypersurfaces with almost complex structures in the real affine space
%J Colloquium Mathematicum
%D 2007
%P 329-338
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-14/
%R 10.4064/cm108-2-14
%G en
%F 10_4064_cm108_2_14
Mayuko Kon. Hypersurfaces with almost complex structures in the real affine space. Colloquium Mathematicum, Tome 108 (2007) no. 2, pp. 329-338. doi : 10.4064/cm108-2-14. http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-14/

Cité par Sources :