Hypersurfaces with almost complex structures in the real affine space
Colloquium Mathematicum, Tome 108 (2007) no. 2, pp. 329-338
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study
affine hypersurface immersions
$f: M \rightarrow {\mathbb R}^{2n+1}$, where $M$ is an almost complex $n$-dimensional manifold. The main purpose is to give a condition for ($M,J$) to be a special Kähler manifold with respect to the Levi-Civita connection of an affine fundamental form.
Keywords:
study affine hypersurface immersions rightarrow mathbb where almost complex n dimensional manifold main purpose condition special hler manifold respect levi civita connection affine fundamental form
Affiliations des auteurs :
Mayuko Kon 1
@article{10_4064_cm108_2_14,
author = {Mayuko Kon},
title = {Hypersurfaces with almost complex structures in the real affine space},
journal = {Colloquium Mathematicum},
pages = {329--338},
year = {2007},
volume = {108},
number = {2},
doi = {10.4064/cm108-2-14},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-2-14/}
}
Mayuko Kon. Hypersurfaces with almost complex structures in the real affine space. Colloquium Mathematicum, Tome 108 (2007) no. 2, pp. 329-338. doi: 10.4064/cm108-2-14
Cité par Sources :