On the arithmetic of
arithmetical congruence monoids
Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 105-118
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\mathbb N}$ represent the positive integers and ${\mathbb N}_0$ the
non-negative integers. If $b\in {\mathbb N}$ and ${{\mit\Gamma}}$ is a
multiplicatively closed subset of
$\mathbb{Z}_b=\mathbb{Z}/b\mathbb{Z}$, then the set $H_{{\mit\Gamma}}
=\{x\in {\mathbb N} \mid x+b\mathbb{Z}\in {{\mit\Gamma}}\}\cup\{1\}$ is a
multiplicative submonoid of ${\mathbb N}$ known as a
congruence monoid. An
arithmetical congruence monoid (or ACM) is a congruence
monoid where ${{\mit\Gamma}}=\{\overline{a}\}$ consists of a single element.
If $H_{{\mit\Gamma}}$ is an ACM, then we represent it with the notation
$M(a,b) =(a+b{\mathbb N}_0)\cup \{1\}$, where $a, b\in {\mathbb N}$
and $a^2\equiv a
\pmod{b}$. A classical 1954 result of James and Niven implies
that the only ACM which admits unique factorization of elements into
products of irreducibles is $M(1,2)=M(3,2)$. In this paper, we
examine further factorization properties of ACMs. We find necessary
and sufficient conditions for an ACM $M(a,b)$ to be half-factorial
(i.e., lengths of irreducible factorizations of an element remain
constant) and further determine conditions for $M(a,b)$ to have
finite elasticity. When the elasticity of $M(a,b)$ is finite, we
produce a formula to compute it. Among our remaining
results, we show that the elasticity of an ACM $M(a,b)$ may not be
accepted and show that if an ACM $M(a,b)$ has infinite elasticity,
then it is not fully elastic.
Keywords:
mathbb represent positive integers mathbb non negative integers mathbb mit gamma multiplicatively closed subset mathbb mathbb mathbb set mit gamma mathbb mid mathbb mit gamma cup multiplicative submonoid mathbb known congruence monoid arithmetical congruence monoid acm congruence monoid where mit gamma overline consists single element mit gamma acm represent notation mathbb cup where mathbb equiv pmod classical result james niven implies only acm which admits unique factorization elements products irreducibles paper examine further factorization properties acms necessary sufficient conditions acm half factorial lengths irreducible factorizations element remain constant further determine conditions have finite elasticity elasticity finite produce formula compute among remaining results elasticity acm may accepted acm has infinite elasticity fully elastic
Affiliations des auteurs :
M. Banister 1 ; J. Chaika 2 ; S. T. Chapman 3 ; W. Meyerson 4
@article{10_4064_cm108_1_9,
author = {M. Banister and J. Chaika and S. T. Chapman and W. Meyerson},
title = {On the arithmetic of
arithmetical congruence monoids},
journal = {Colloquium Mathematicum},
pages = {105--118},
publisher = {mathdoc},
volume = {108},
number = {1},
year = {2007},
doi = {10.4064/cm108-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-9/}
}
TY - JOUR AU - M. Banister AU - J. Chaika AU - S. T. Chapman AU - W. Meyerson TI - On the arithmetic of arithmetical congruence monoids JO - Colloquium Mathematicum PY - 2007 SP - 105 EP - 118 VL - 108 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-9/ DO - 10.4064/cm108-1-9 LA - en ID - 10_4064_cm108_1_9 ER -
%0 Journal Article %A M. Banister %A J. Chaika %A S. T. Chapman %A W. Meyerson %T On the arithmetic of arithmetical congruence monoids %J Colloquium Mathematicum %D 2007 %P 105-118 %V 108 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-9/ %R 10.4064/cm108-1-9 %G en %F 10_4064_cm108_1_9
M. Banister; J. Chaika; S. T. Chapman; W. Meyerson. On the arithmetic of arithmetical congruence monoids. Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 105-118. doi: 10.4064/cm108-1-9
Cité par Sources :