Top-stable and layer-stable degenerations and hom-order
Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 63-71
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Using geometrical methods, Huisgen-Zimmermann showed
that if $M$ is a module with simple top, then $M$ has no proper
degeneration $M$ such that
$\mathfrak{r} ^tM/\mathfrak{r} ^{t+1}M\simeq \mathfrak{r}
^tN/\mathfrak{r} ^{t+1}N$ for all $t$.
Given a module $M$ with square-free
top and a projective cover $P$, she showed that $\dim_k\mathop{\rm Hom}
(M,M)=\dim_k\mathop{\rm Hom} (P,M)$ if and only if $M$ has no proper
degeneration $M$ where $M/\mathfrak{r} M\simeq
N/\mathfrak{r} N$. We prove
here these results
in a more general form, for hom-order instead of degeneration-order, and
we prove them algebraically. The results
of Huisgen-Zimmermann follow as
consequences from our results. In particular, we
find that her second result holds not just for modules with
square-free top, but also for indecomposable modules in general.
Keywords:
using geometrical methods huisgen zimmermann showed module simple top has proper degeneration deg mathfrak mathfrak simeq mathfrak mathfrak given module square free top projective cover she showed dim mathop hom dim mathop hom only has proper degeneration deg where mathfrak simeq mathfrak prove here these results general form hom order instead degeneration order prove algebraically results huisgen zimmermann follow consequences results particular her second result holds just modules square free top indecomposable modules general
Affiliations des auteurs :
S. O. Smalø 1 ; A. Valenta 1
@article{10_4064_cm108_1_6,
author = {S. O. Smal{\o} and A. Valenta},
title = {Top-stable and layer-stable degenerations and hom-order},
journal = {Colloquium Mathematicum},
pages = {63--71},
publisher = {mathdoc},
volume = {108},
number = {1},
year = {2007},
doi = {10.4064/cm108-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-6/}
}
TY - JOUR AU - S. O. Smalø AU - A. Valenta TI - Top-stable and layer-stable degenerations and hom-order JO - Colloquium Mathematicum PY - 2007 SP - 63 EP - 71 VL - 108 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-6/ DO - 10.4064/cm108-1-6 LA - en ID - 10_4064_cm108_1_6 ER -
S. O. Smalø; A. Valenta. Top-stable and layer-stable degenerations and hom-order. Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 63-71. doi: 10.4064/cm108-1-6
Cité par Sources :