A basis of $ \mathbb{Z}_m$, II
Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 141-145.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a set $A\subset \mathbb{N}$ let $\sigma_A(n)$ denote the number of ordered pairs $(a,a')\in A\times A$ such that $a+a'=n$. Erdős and Turán conjectured that for any asymptotic basis $A$ of $\mathbb{N}$, $\sigma_A(n)$ is unbounded. We show that the analogue of the Erdős–Turán conjecture does not hold in the abelian group $(\mathbb{Z}_m,+)$, namely, for any natural number $m$, there exists a set $A\subseteq\mathbb{Z}_m$ such that $A+A=\mathbb{Z}_m$ and $\sigma_A(\overline {n})\leq 5120$ for all $\overline {n}\in \mathbb{Z}_m$.
DOI : 10.4064/cm108-1-12
Keywords: given set subset mathbb sigma denote number ordered pairs times erd tur conjectured asymptotic basis mathbb sigma unbounded analogue erd tur conjecture does abelian group mathbb namely natural number there exists set subseteq mathbb mathbb sigma overline leq overline mathbb

Min Tang 1 ; Yong-Gao Yong-Gao 2

1 Department of Mathematics Anhui Normal University Wuhu 241000, China
2 Department of Mathematics Nanjing Normal University Nanjing 210097, China
@article{10_4064_cm108_1_12,
     author = {Min Tang and Yong-Gao Yong-Gao},
     title = {A basis of $  \mathbb{Z}_m$, {II}},
     journal = {Colloquium Mathematicum},
     pages = {141--145},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {2007},
     doi = {10.4064/cm108-1-12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-12/}
}
TY  - JOUR
AU  - Min Tang
AU  - Yong-Gao Yong-Gao
TI  - A basis of $  \mathbb{Z}_m$, II
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 141
EP  - 145
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-12/
DO  - 10.4064/cm108-1-12
LA  - en
ID  - 10_4064_cm108_1_12
ER  - 
%0 Journal Article
%A Min Tang
%A Yong-Gao Yong-Gao
%T A basis of $  \mathbb{Z}_m$, II
%J Colloquium Mathematicum
%D 2007
%P 141-145
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-12/
%R 10.4064/cm108-1-12
%G en
%F 10_4064_cm108_1_12
Min Tang; Yong-Gao Yong-Gao. A basis of $  \mathbb{Z}_m$, II. Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 141-145. doi : 10.4064/cm108-1-12. http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-12/

Cité par Sources :