A basis of $ \mathbb{Z}_m$, II
Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 141-145
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given a set $A\subset \mathbb{N}$ let $\sigma_A(n)$
denote the number of ordered pairs $(a,a')\in A\times A$ such that
$a+a'=n$. Erdős and Turán conjectured that for any
asymptotic basis $A$ of $\mathbb{N}$, $\sigma_A(n)$ is unbounded.
We show that the analogue of the Erdős–Turán
conjecture does not hold in the abelian group $(\mathbb{Z}_m,+)$, namely,
for any natural number $m$, there exists a set
$A\subseteq\mathbb{Z}_m$ such that $A+A=\mathbb{Z}_m$ and
$\sigma_A(\overline {n})\leq 5120$ for all $\overline {n}\in \mathbb{Z}_m$.
Keywords:
given set subset mathbb sigma denote number ordered pairs times erd tur conjectured asymptotic basis mathbb sigma unbounded analogue erd tur conjecture does abelian group mathbb namely natural number there exists set subseteq mathbb mathbb sigma overline leq overline mathbb
Affiliations des auteurs :
Min Tang 1 ; Yong-Gao Yong-Gao 2
@article{10_4064_cm108_1_12,
author = {Min Tang and Yong-Gao Yong-Gao},
title = {A basis of $ \mathbb{Z}_m$, {II}},
journal = {Colloquium Mathematicum},
pages = {141--145},
publisher = {mathdoc},
volume = {108},
number = {1},
year = {2007},
doi = {10.4064/cm108-1-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm108-1-12/}
}
Min Tang; Yong-Gao Yong-Gao. A basis of $ \mathbb{Z}_m$, II. Colloquium Mathematicum, Tome 108 (2007) no. 1, pp. 141-145. doi: 10.4064/cm108-1-12
Cité par Sources :