Sums of reciprocals of additive functions running over short intervals
Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 317-326.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Letting $f(n)=A\log n+t(n)$, where $t(n)$ is a small additive function and $A$ a positive constant, we obtain estimates for the quantities $\sum _{x \le n \le x+H} 1/f(Q(n))$ and $\sum _{x \le p \le x+H} 1/f(Q(p))$, where $H=H(x)$ satisfies certain growth conditions, $p$ runs over prime numbers and $Q$ is a polynomial with integer coefficients, whose leading coefficient is positive, and with all its roots simple.
DOI : 10.4064/cm107-2-11
Keywords: letting log where small additive function positive constant obtain estimates quantities sum sum where satisfies certain growth conditions runs prime numbers polynomial integer coefficients whose leading coefficient positive its roots simple

J.-M. De Koninck 1 ; I. Kátai 2

1 Département de mathématiques Université Laval Québec G1K 7P4, Canada
2 Computer Algebra Department Eötvös Loránd University Pázmány Péter Sétány I//C 1117 Budapest, Hungary
@article{10_4064_cm107_2_11,
     author = {J.-M. De Koninck and I. K\'atai},
     title = {Sums of reciprocals of additive functions
 running over short intervals},
     journal = {Colloquium Mathematicum},
     pages = {317--326},
     publisher = {mathdoc},
     volume = {107},
     number = {2},
     year = {2007},
     doi = {10.4064/cm107-2-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-11/}
}
TY  - JOUR
AU  - J.-M. De Koninck
AU  - I. Kátai
TI  - Sums of reciprocals of additive functions
 running over short intervals
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 317
EP  - 326
VL  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-11/
DO  - 10.4064/cm107-2-11
LA  - en
ID  - 10_4064_cm107_2_11
ER  - 
%0 Journal Article
%A J.-M. De Koninck
%A I. Kátai
%T Sums of reciprocals of additive functions
 running over short intervals
%J Colloquium Mathematicum
%D 2007
%P 317-326
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-11/
%R 10.4064/cm107-2-11
%G en
%F 10_4064_cm107_2_11
J.-M. De Koninck; I. Kátai. Sums of reciprocals of additive functions
 running over short intervals. Colloquium Mathematicum, Tome 107 (2007) no. 2, pp. 317-326. doi : 10.4064/cm107-2-11. http://geodesic.mathdoc.fr/articles/10.4064/cm107-2-11/

Cité par Sources :