On the diophantine equation $f(x)f(y)=f(z)^2$
Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 1-6.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f\in\mathbb Q[X]$ and $\mathop{\rm deg}f\leq 3$. We prove that if $\mathop{\rm deg}f=2$, then the diophantine equation $f(x)f(y)=f(z)^2$ has infinitely many nontrivial solutions in $\mathbb Q(t)$. In the case when $\mathop{\rm deg}f=3$ and $f(X)=X(X^2+aX+b)$ we show that for all but finitely many $a,b\in\mathbb Z$ satisfying $ab\neq 0$ and additionally, if $p\mid a$, then $p^2\nmid b$, the equation $f(x)f(y)=f(z)^2$ has infinitely many nontrivial solutions in rationals.
DOI : 10.4064/cm107-1-1
Mots-clés : mathbb mathop deg leq prove mathop deg diophantine equation y has infinitely many nontrivial solutions mathbb mathop deg finitely many mathbb satisfying neq additionally mid nmid equation y has infinitely many nontrivial solutions rationals

Maciej Ulas 1

1 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_cm107_1_1,
     author = {Maciej Ulas},
     title = {On the diophantine equation $f(x)f(y)=f(z)^2$},
     journal = {Colloquium Mathematicum},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2007},
     doi = {10.4064/cm107-1-1},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-1/}
}
TY  - JOUR
AU  - Maciej Ulas
TI  - On the diophantine equation $f(x)f(y)=f(z)^2$
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 1
EP  - 6
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-1/
DO  - 10.4064/cm107-1-1
LA  - fr
ID  - 10_4064_cm107_1_1
ER  - 
%0 Journal Article
%A Maciej Ulas
%T On the diophantine equation $f(x)f(y)=f(z)^2$
%J Colloquium Mathematicum
%D 2007
%P 1-6
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-1/
%R 10.4064/cm107-1-1
%G fr
%F 10_4064_cm107_1_1
Maciej Ulas. On the diophantine equation $f(x)f(y)=f(z)^2$. Colloquium Mathematicum, Tome 107 (2007) no. 1, pp. 1-6. doi : 10.4064/cm107-1-1. http://geodesic.mathdoc.fr/articles/10.4064/cm107-1-1/

Cité par Sources :