On a linear homogeneous congruence
Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 283-292.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The number of solutions of the congruence $a_1x_1+\cdots+a_kx_k\equiv 0\pmod n $ in the box $0\le x_i\le b_i$ is estimated from below in the best possible way, provided for all $i,j$ either $(a_i,n)\,|\, (a_j,n)$ or $ (a_j,n)\,|\, (a_i,n)$ or $n\,|\, [a_i,a_j]$.
DOI : 10.4064/cm106-2-8
Keywords: number solutions congruence cdots equiv pmod box estimated below best possible provided either j

A. Schinzel 1 ; M. Zakarczemny 2

1 Institute of Mathematics Polish Academy of Sciences P.O. Box 21 00-956 Warszawa, Poland
2 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_cm106_2_8,
     author = {A. Schinzel and M. Zakarczemny},
     title = {On a linear homogeneous congruence},
     journal = {Colloquium Mathematicum},
     pages = {283--292},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2006},
     doi = {10.4064/cm106-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-8/}
}
TY  - JOUR
AU  - A. Schinzel
AU  - M. Zakarczemny
TI  - On a linear homogeneous congruence
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 283
EP  - 292
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-8/
DO  - 10.4064/cm106-2-8
LA  - en
ID  - 10_4064_cm106_2_8
ER  - 
%0 Journal Article
%A A. Schinzel
%A M. Zakarczemny
%T On a linear homogeneous congruence
%J Colloquium Mathematicum
%D 2006
%P 283-292
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-8/
%R 10.4064/cm106-2-8
%G en
%F 10_4064_cm106_2_8
A. Schinzel; M. Zakarczemny. On a linear homogeneous congruence. Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 283-292. doi : 10.4064/cm106-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-8/

Cité par Sources :