On a linear homogeneous congruence
Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 283-292
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The number of solutions of the congruence
$a_1x_1+\cdots+a_kx_k\equiv 0\pmod n $ in the box $0\le x_i\le
b_i$ is estimated from below in the best possible way, provided
for all $i,j$ either $(a_i,n)\,|\, (a_j,n)$ or $
(a_j,n)\,|\, (a_i,n)$
or $n\,|\, [a_i,a_j]$.
Keywords:
number solutions congruence cdots equiv pmod box estimated below best possible provided either j
Affiliations des auteurs :
A. Schinzel 1 ; M. Zakarczemny 2
@article{10_4064_cm106_2_8,
author = {A. Schinzel and M. Zakarczemny},
title = {On a linear homogeneous congruence},
journal = {Colloquium Mathematicum},
pages = {283--292},
publisher = {mathdoc},
volume = {106},
number = {2},
year = {2006},
doi = {10.4064/cm106-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-2-8/}
}
A. Schinzel; M. Zakarczemny. On a linear homogeneous congruence. Colloquium Mathematicum, Tome 106 (2006) no. 2, pp. 283-292. doi: 10.4064/cm106-2-8
Cité par Sources :