On rings of constants of derivations
in two variables in positive characteristic
Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 109-117
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $k$ be a field of chracteristic $p>0$. We describe all derivations of the polynomial algebra $k[x,y]$, homogeneous with respect to a given weight vector, in particular all monomial derivations, with the ring of constants of the form $k[x^p,y^p,f]$, where $f\in k[x,y]\setminus k[x^p,y^p]$.
Keywords:
field chracteristic describe derivations polynomial algebra homogeneous respect given weight vector particular monomial derivations ring constants form y where setminus y
Affiliations des auteurs :
Piotr J/edrzejewicz  1
@article{10_4064_cm106_1_9,
author = {Piotr J/edrzejewicz},
title = {On rings of constants of derivations
in two variables in positive characteristic},
journal = {Colloquium Mathematicum},
pages = {109--117},
year = {2006},
volume = {106},
number = {1},
doi = {10.4064/cm106-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-9/}
}
TY - JOUR AU - Piotr J/edrzejewicz TI - On rings of constants of derivations in two variables in positive characteristic JO - Colloquium Mathematicum PY - 2006 SP - 109 EP - 117 VL - 106 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-9/ DO - 10.4064/cm106-1-9 LA - en ID - 10_4064_cm106_1_9 ER -
Piotr J/edrzejewicz. On rings of constants of derivations in two variables in positive characteristic. Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 109-117. doi: 10.4064/cm106-1-9
Cité par Sources :