On rings of constants of derivations
in two variables in positive characteristic
Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 109-117
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $k$ be a field of chracteristic $p>0$. We describe all derivations of the polynomial algebra $k[x,y]$, homogeneous with respect to a given weight vector, in particular all monomial derivations, with the ring of constants of the form $k[x^p,y^p,f]$, where $f\in k[x,y]\setminus k[x^p,y^p]$.
Keywords:
field chracteristic describe derivations polynomial algebra homogeneous respect given weight vector particular monomial derivations ring constants form y where setminus y
Affiliations des auteurs :
Piotr J/edrzejewicz 1
@article{10_4064_cm106_1_9,
author = {Piotr J/edrzejewicz},
title = {On rings of constants of derivations
in two variables in positive characteristic},
journal = {Colloquium Mathematicum},
pages = {109--117},
publisher = {mathdoc},
volume = {106},
number = {1},
year = {2006},
doi = {10.4064/cm106-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-9/}
}
TY - JOUR AU - Piotr J/edrzejewicz TI - On rings of constants of derivations in two variables in positive characteristic JO - Colloquium Mathematicum PY - 2006 SP - 109 EP - 117 VL - 106 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-9/ DO - 10.4064/cm106-1-9 LA - en ID - 10_4064_cm106_1_9 ER -
%0 Journal Article %A Piotr J/edrzejewicz %T On rings of constants of derivations in two variables in positive characteristic %J Colloquium Mathematicum %D 2006 %P 109-117 %V 106 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-9/ %R 10.4064/cm106-1-9 %G en %F 10_4064_cm106_1_9
Piotr J/edrzejewicz. On rings of constants of derivations in two variables in positive characteristic. Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 109-117. doi: 10.4064/cm106-1-9
Cité par Sources :