On rings of constants of derivations in two variables in positive characteristic
Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 109-117.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $k$ be a field of chracteristic $p>0$. We describe all derivations of the polynomial algebra $k[x,y]$, homogeneous with respect to a given weight vector, in particular all monomial derivations, with the ring of constants of the form $k[x^p,y^p,f]$, where $f\in k[x,y]\setminus k[x^p,y^p]$.
DOI : 10.4064/cm106-1-9
Keywords: field chracteristic describe derivations polynomial algebra homogeneous respect given weight vector particular monomial derivations ring constants form y where setminus y

Piotr J/edrzejewicz 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toru/n, Poland
@article{10_4064_cm106_1_9,
     author = {Piotr J/edrzejewicz},
     title = {On rings of constants of derivations
 in two variables in positive characteristic},
     journal = {Colloquium Mathematicum},
     pages = {109--117},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {2006},
     doi = {10.4064/cm106-1-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-9/}
}
TY  - JOUR
AU  - Piotr J/edrzejewicz
TI  - On rings of constants of derivations
 in two variables in positive characteristic
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 109
EP  - 117
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-9/
DO  - 10.4064/cm106-1-9
LA  - en
ID  - 10_4064_cm106_1_9
ER  - 
%0 Journal Article
%A Piotr J/edrzejewicz
%T On rings of constants of derivations
 in two variables in positive characteristic
%J Colloquium Mathematicum
%D 2006
%P 109-117
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-9/
%R 10.4064/cm106-1-9
%G en
%F 10_4064_cm106_1_9
Piotr J/edrzejewicz. On rings of constants of derivations
 in two variables in positive characteristic. Colloquium Mathematicum, Tome 106 (2006) no. 1, pp. 109-117. doi : 10.4064/cm106-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm106-1-9/

Cité par Sources :