On some representations of almost everywhere continuous functions on $\mathbb R^m$
Colloquium Mathematicum, Tome 105 (2006) no. 2, pp. 319-331.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that the following conditions are equivalent: (a) $f$ is an almost everywhere continuous function on ${{\mathbb R}}^m $; (b) $f=g+h$, where $g,h$ are strongly quasicontinuous on ${{\mathbb R}}^m;$ (c) $f=c+gh$, where $c \in {{\mathbb R}}$ and $g,h$ are strongly quasicontinuous on ${{\mathbb R}}^m.$
DOI : 10.4064/cm105-2-12
Keywords: proved following conditions equivalent almost everywhere continuous function mathbb where strongly quasicontinuous mathbb where mathbb strongly quasicontinuous nbsp mathbb

Ewa Strońska 1

1 Institute of Mathematics Kazimierz Wielki University Plac Weyssenhoffa 11 85-072 Bydgoszcz, Poland
@article{10_4064_cm105_2_12,
     author = {Ewa Stro\'nska},
     title = {On some representations of almost everywhere continuous
functions on $\mathbb R^m$},
     journal = {Colloquium Mathematicum},
     pages = {319--331},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2006},
     doi = {10.4064/cm105-2-12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-12/}
}
TY  - JOUR
AU  - Ewa Strońska
TI  - On some representations of almost everywhere continuous
functions on $\mathbb R^m$
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 319
EP  - 331
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-12/
DO  - 10.4064/cm105-2-12
LA  - en
ID  - 10_4064_cm105_2_12
ER  - 
%0 Journal Article
%A Ewa Strońska
%T On some representations of almost everywhere continuous
functions on $\mathbb R^m$
%J Colloquium Mathematicum
%D 2006
%P 319-331
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-12/
%R 10.4064/cm105-2-12
%G en
%F 10_4064_cm105_2_12
Ewa Strońska. On some representations of almost everywhere continuous
functions on $\mathbb R^m$. Colloquium Mathematicum, Tome 105 (2006) no. 2, pp. 319-331. doi : 10.4064/cm105-2-12. http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-12/

Cité par Sources :