On some representations of almost everywhere continuous
functions on $\mathbb R^m$
Colloquium Mathematicum, Tome 105 (2006) no. 2, pp. 319-331
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is proved that the following conditions are equivalent:
(a) $f$ is an almost everywhere continuous function on
${{\mathbb R}}^m $; (b) $f=g+h$, where $g,h$ are strongly quasicontinuous on
${{\mathbb R}}^m;$ (c) $f=c+gh$, where $c \in {{\mathbb R}}$ and $g,h$ are strongly
quasicontinuous on ${{\mathbb R}}^m.$
Keywords:
proved following conditions equivalent almost everywhere continuous function mathbb where strongly quasicontinuous mathbb where mathbb strongly quasicontinuous nbsp mathbb
Affiliations des auteurs :
Ewa Strońska 1
@article{10_4064_cm105_2_12,
author = {Ewa Stro\'nska},
title = {On some representations of almost everywhere continuous
functions on $\mathbb R^m$},
journal = {Colloquium Mathematicum},
pages = {319--331},
publisher = {mathdoc},
volume = {105},
number = {2},
year = {2006},
doi = {10.4064/cm105-2-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-12/}
}
TY - JOUR AU - Ewa Strońska TI - On some representations of almost everywhere continuous functions on $\mathbb R^m$ JO - Colloquium Mathematicum PY - 2006 SP - 319 EP - 331 VL - 105 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-12/ DO - 10.4064/cm105-2-12 LA - en ID - 10_4064_cm105_2_12 ER -
Ewa Strońska. On some representations of almost everywhere continuous functions on $\mathbb R^m$. Colloquium Mathematicum, Tome 105 (2006) no. 2, pp. 319-331. doi: 10.4064/cm105-2-12
Cité par Sources :