Derived endo-discrete artin algebras
Colloquium Mathematicum, Tome 105 (2006) no. 2, pp. 297-310
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\mit\Lambda} $ be an artin algebra. We prove that
for each sequence $(h_{i})_{i\in \mathbb{Z}}$ of non-negative integers there are
only a finite number of isomorphism classes of indecomposables $X\in \mathcal{D}^{\rm b}({\mit\Lambda} ),$ the bounded derived category of ${\mit\Lambda} $,
with $\mathop{\rm length}\nolimits _{E(X)}H^{i}(X)=h_{i}$ for all $i\in \mathbb{Z}$ and $E(X)$ the
endomorphism ring of $X$ in $\mathcal{D}^{\rm b}({\mit\Lambda} )$ if and only if $\mathcal{D}^{\rm b}(\mathop{\rm Mod}\nolimits {\mit\Lambda} )$,
the bounded derived category of the category
$\mathop{\rm Mod}\nolimits {\mit\Lambda} $ of all left ${\mit\Lambda} $-modules, has no
generic objects in the sense of
[4].
Keywords:
mit lambda artin algebra prove each sequence mathbb non negative integers there only finite number isomorphism classes indecomposables mathcal mit lambda bounded derived category mit lambda mathop length nolimits mathbb endomorphism ring mathcal mit lambda only mathcal mathop mod nolimits mit lambda bounded derived category category mathop mod nolimits mit lambda mit lambda modules has generic objects sense
Affiliations des auteurs :
Raymundo Bautista 1
@article{10_4064_cm105_2_10,
author = {Raymundo Bautista},
title = {Derived endo-discrete artin algebras},
journal = {Colloquium Mathematicum},
pages = {297--310},
publisher = {mathdoc},
volume = {105},
number = {2},
year = {2006},
doi = {10.4064/cm105-2-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm105-2-10/}
}
Raymundo Bautista. Derived endo-discrete artin algebras. Colloquium Mathematicum, Tome 105 (2006) no. 2, pp. 297-310. doi: 10.4064/cm105-2-10
Cité par Sources :