On the Diophantine equation $x^2-dy^4=1$ with prime discriminant II
Colloquium Mathematicum, Tome 105 (2006) no. 1, pp. 51-55.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p$ denote a prime number. P. Samuel recently solved the problem of determining all squares in the linear recurrence sequence $\{ T_n \}$, where $T_n$ and $U_n$ satisfy $T_n^2-pU_n^2=1$. Samuel left open the problem of determining all squares in the sequence $\{ U_n \}$. This problem was recently solved by the authors. In the present paper, we extend our previous joint work by completely solving the equation $U_n=bx^2$, where $b$ is a fixed positive squarefree integer. This result also extends previous work of the second author.
DOI : 10.4064/cm105-1-6
Keywords: denote prime number nbsp samuel recently solved problem determining squares linear recurrence sequence where satisfy pu samuel problem determining squares sequence nbsp problem recently solved authors present paper extend previous joint work completely solving equation where fixed positive squarefree integer result extends previous work second author

D. Poulakis 1 ; P. G. Walsh 2

1 Department of Mathematics Aristotle University of Thessaloniki University Campus 541 24 Thessaloniki, Greece
2 Department of Mathematics University of Ottawa 585 King Edward St. Ottawa, Ontario, Canada, K1N 6N5
@article{10_4064_cm105_1_6,
     author = {D. Poulakis and P. G. Walsh},
     title = {On the {Diophantine} equation $x^2-dy^4=1$
 with prime discriminant {II}},
     journal = {Colloquium Mathematicum},
     pages = {51--55},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2006},
     doi = {10.4064/cm105-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-6/}
}
TY  - JOUR
AU  - D. Poulakis
AU  - P. G. Walsh
TI  - On the Diophantine equation $x^2-dy^4=1$
 with prime discriminant II
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 51
EP  - 55
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-6/
DO  - 10.4064/cm105-1-6
LA  - en
ID  - 10_4064_cm105_1_6
ER  - 
%0 Journal Article
%A D. Poulakis
%A P. G. Walsh
%T On the Diophantine equation $x^2-dy^4=1$
 with prime discriminant II
%J Colloquium Mathematicum
%D 2006
%P 51-55
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-6/
%R 10.4064/cm105-1-6
%G en
%F 10_4064_cm105_1_6
D. Poulakis; P. G. Walsh. On the Diophantine equation $x^2-dy^4=1$
 with prime discriminant II. Colloquium Mathematicum, Tome 105 (2006) no. 1, pp. 51-55. doi : 10.4064/cm105-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-6/

Cité par Sources :