On cyclic vertices in valued translation quivers
Colloquium Mathematicum, Tome 105 (2006) no. 1, pp. 45-50.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $x$ and $y$ be two vertices lying on an oriented cycle in a connected valued translation quiver $(\Gamma , \tau , \delta )$. We prove that, under certain conditions, $x$ and $y$ belong to the same cyclic component of $(\Gamma , \tau , \delta )$ if and only if there is an oriented cycle in $(\Gamma , \tau , \delta )$ passing through $x$ and $y$.
DOI : 10.4064/cm105-1-5
Keywords: vertices lying oriented cycle connected valued translation quiver gamma tau delta prove under certain conditions belong cyclic component gamma tau delta only there oriented cycle gamma tau delta passing through

Piotr Malicki 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm105_1_5,
     author = {Piotr Malicki},
     title = {On cyclic vertices in valued translation quivers},
     journal = {Colloquium Mathematicum},
     pages = {45--50},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2006},
     doi = {10.4064/cm105-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-5/}
}
TY  - JOUR
AU  - Piotr Malicki
TI  - On cyclic vertices in valued translation quivers
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 45
EP  - 50
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-5/
DO  - 10.4064/cm105-1-5
LA  - en
ID  - 10_4064_cm105_1_5
ER  - 
%0 Journal Article
%A Piotr Malicki
%T On cyclic vertices in valued translation quivers
%J Colloquium Mathematicum
%D 2006
%P 45-50
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-5/
%R 10.4064/cm105-1-5
%G en
%F 10_4064_cm105_1_5
Piotr Malicki. On cyclic vertices in valued translation quivers. Colloquium Mathematicum, Tome 105 (2006) no. 1, pp. 45-50. doi : 10.4064/cm105-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-5/

Cité par Sources :