Associated primes, integral closures and ideal topologies
Colloquium Mathematicum, Tome 105 (2006) no. 1, pp. 35-43.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathfrak{a}\subseteq \mathfrak{b}$ be ideals of a Noetherian ring $R$, and let $N$ be a non-zero finitely generated $R$-module. The set $\overline{Q}^{*}(\mathfrak{a}, N)$ of quintasymptotic primes of $\mathfrak{a}$ with respect to $N$ was originally introduced by McAdam. Also, it has been shown by Naghipour and Schenzel that the set $A^*_a(\mathfrak{b}, N):= \bigcup _{n\geq1}\mathop{\rm Ass}_RR/(\mathfrak{b}^n)^{(N)}_a$ of associated primes is finite. The purpose of this paper is to show that the topology on $N$ defined by $\{(\mathfrak{a}^n)_a^{(N)}:_R \langle \mathfrak{b}\rangle \}_{n\geq1 }$ is finer than the topology defined by $\{(\mathfrak{b}^n)_a^{(N)}\}_{n\geq 1}$ if and only if $A^*_a(\mathfrak{b}, N)$ is disjoint from the quintasymptotic primes of $\mathfrak{a}$ with respect to $N$. Moreover, we show that if $\mathfrak{a}$ is generated by an asymptotic sequence on $N$, then $A^*_a(\mathfrak{a}, N)= \overline{Q}^{*}(\mathfrak{a}, N)$.
DOI : 10.4064/cm105-1-4
Keywords: mathfrak subseteq mathfrak ideals noetherian ring non zero finitely generated r module set overline * mathfrak quintasymptotic primes mathfrak respect nbsp originally introduced mcadam has shown naghipour schenzel set * mathfrak bigcup geq mathop ass mathfrak associated primes finite purpose paper topology defined mathfrak langle mathfrak rangle geq finer topology defined mathfrak geq only * mathfrak disjoint quintasymptotic primes mathfrak respect moreover mathfrak generated asymptotic sequence * mathfrak overline * mathfrak

Reza Naghipour 1

1 Department of Mathematics University of Tabriz Tabriz, Iran and Institute for Studies in Theoretical Physics and Mathematics P.O. Box 19395-5746 Tehran, Iran
@article{10_4064_cm105_1_4,
     author = {Reza Naghipour},
     title = {Associated primes, integral closures and ideal topologies},
     journal = {Colloquium Mathematicum},
     pages = {35--43},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2006},
     doi = {10.4064/cm105-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-4/}
}
TY  - JOUR
AU  - Reza Naghipour
TI  - Associated primes, integral closures and ideal topologies
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 35
EP  - 43
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-4/
DO  - 10.4064/cm105-1-4
LA  - en
ID  - 10_4064_cm105_1_4
ER  - 
%0 Journal Article
%A Reza Naghipour
%T Associated primes, integral closures and ideal topologies
%J Colloquium Mathematicum
%D 2006
%P 35-43
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-4/
%R 10.4064/cm105-1-4
%G en
%F 10_4064_cm105_1_4
Reza Naghipour. Associated primes, integral closures and ideal topologies. Colloquium Mathematicum, Tome 105 (2006) no. 1, pp. 35-43. doi : 10.4064/cm105-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-4/

Cité par Sources :