Inequalities for two sine polynomials
Colloquium Mathematicum, Tome 105 (2006) no. 1, pp. 127-134.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove: (I) For all integers $n\geq 2$ and real numbers $x\in (0,\pi)$ we have $$ \alpha \leq \sum_{j=1}^{n-1}\frac{1}{n^2-j^2} \sin(jx) \leq \beta, $$ with the best possible constant bounds $$ \alpha=\frac{15-\sqrt{2073}}{10240}\sqrt{1998-10\sqrt{2073}}= -0.1171\dots ,\quad\ \beta=\frac{1}{3}. $$ (II) The inequality $$ 0\sum_{j=1}^{n-1}{(n^2-j^2)} \sin(jx) $$ holds for all even integers $n\geq 2$ and $x\in (0,\pi)$, and also for all odd integers $n\geq 3$ and $x\in (0,\pi-\pi/n]$.
DOI : 10.4064/cm105-1-11
Keywords: prove integers geq real numbers have alpha leq sum n frac j sin leq beta best possible constant bounds alpha frac sqrt sqrt sqrt dots quad beta frac inequality sum n j sin holds even integers geq odd integers geq pi

Horst Alzer 1 ; Stamatis Koumandos 2

1 Morsbacher Str. 10 D-51545 Waldbröl, Germany
2 Department of Mathematics and Statistics The University of Cyprus P.O. Box 20537 1678 Nicosia, Cyprus
@article{10_4064_cm105_1_11,
     author = {Horst Alzer and Stamatis Koumandos},
     title = {Inequalities for two sine polynomials},
     journal = {Colloquium Mathematicum},
     pages = {127--134},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2006},
     doi = {10.4064/cm105-1-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-11/}
}
TY  - JOUR
AU  - Horst Alzer
AU  - Stamatis Koumandos
TI  - Inequalities for two sine polynomials
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 127
EP  - 134
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-11/
DO  - 10.4064/cm105-1-11
LA  - en
ID  - 10_4064_cm105_1_11
ER  - 
%0 Journal Article
%A Horst Alzer
%A Stamatis Koumandos
%T Inequalities for two sine polynomials
%J Colloquium Mathematicum
%D 2006
%P 127-134
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-11/
%R 10.4064/cm105-1-11
%G en
%F 10_4064_cm105_1_11
Horst Alzer; Stamatis Koumandos. Inequalities for two sine polynomials. Colloquium Mathematicum, Tome 105 (2006) no. 1, pp. 127-134. doi : 10.4064/cm105-1-11. http://geodesic.mathdoc.fr/articles/10.4064/cm105-1-11/

Cité par Sources :