A basis of ${\bf Z}_m$
Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 99-103.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\sigma_A(n)=|\{(a,a')\in A^2: a+a'=n\}|$, where $n\in {\bf N}$ and $A$ is a subset of ${\bf N}$. Erdős and Turán conjectured that for any basis $A$ of order 2 of ${\bf N}$, $\sigma_A(n)$ is unbounded. In 1990, Imre Z. Ruzsa constructed a basis $A$ of order 2 of ${\bf N}$ for which $\sigma_A(n)$ is bounded in the square mean. In this paper, we show that there exists a positive integer $m_0$ such that, for any integer $m\geq m_0$, we have a set $A\subset {\bf Z}_m$ such that $A+A={\bf Z}_m$ and $\sigma_A(\overline{n})\leq 768$ for all $\overline{n}\in {\bf Z}_m$.
DOI : 10.4064/cm104-1-6
Mots-clés : sigma where subset erd tur conjectured basis order sigma unbounded imre nbsp ruzsa constructed basis order nbsp which sigma bounded square mean paper there exists positive integer integer geq have set subset sigma overline leq overline

Min Tang 1 ; Yong-Gao Chen 2

1 Department of Mathematics Anhui Normal University Wuhu 241000, China
2 Department of Mathematics Nanjing Normal University Nanjing 210097, China
@article{10_4064_cm104_1_6,
     author = {Min Tang and Yong-Gao Chen},
     title = {A basis of ${\bf Z}_m$},
     journal = {Colloquium Mathematicum},
     pages = {99--103},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2006},
     doi = {10.4064/cm104-1-6},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-6/}
}
TY  - JOUR
AU  - Min Tang
AU  - Yong-Gao Chen
TI  - A basis of ${\bf Z}_m$
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 99
EP  - 103
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-6/
DO  - 10.4064/cm104-1-6
LA  - de
ID  - 10_4064_cm104_1_6
ER  - 
%0 Journal Article
%A Min Tang
%A Yong-Gao Chen
%T A basis of ${\bf Z}_m$
%J Colloquium Mathematicum
%D 2006
%P 99-103
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-6/
%R 10.4064/cm104-1-6
%G de
%F 10_4064_cm104_1_6
Min Tang; Yong-Gao Chen. A basis of ${\bf Z}_m$. Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 99-103. doi : 10.4064/cm104-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-6/

Cité par Sources :