Residue class rings of real-analytic and entire functions
Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 85-97
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal{A}(\mathbb{R})$ and
$\mathcal{E}(\mathbb{R})$ denote respectively the ring of
analytic and real entire functions in one variable. It is shown
that if $\mathfrak{m}$ is a maximal ideal of
$\mathcal{A}(\mathbb{R})$, then
$\mathcal{A}(\mathbb{R})/\mathfrak{m}$ is isomorphic either to
the reals or a real closed field that is an $\eta_1$-set, while if
$\mathfrak{m}$ is a maximal ideal of $\mathcal{E}(\mathbb{R})$,
then $\mathcal{E}(\mathbb{R})/\mathfrak{m}$ is isomorphic to one
of the latter two fields or to the field of complex numbers.
Moreover, we study the residue class rings of prime ideals
of these rings and their Krull dimensions. Use is made
of a classical characterization of algebraically closed fields
due to E. Steinitz and techniques described in L. Gillman
and M. Jerison's book on rings of continuous functions.
Keywords:
mathcal mathbb mathcal mathbb denote respectively ring analytic real entire functions variable shown mathfrak maximal ideal mathcal mathbb mathcal mathbb mathfrak isomorphic either reals real closed field eta set while mathfrak maximal ideal mathcal mathbb mathcal mathbb mathfrak isomorphic latter fields field complex numbers moreover study residue class rings prime ideals these rings their krull dimensions made classical characterization algebraically closed fields due nbsp steinitz techniques described nbsp gillman nbsp jerisons book rings continuous functions
Affiliations des auteurs :
Marek Golasiński 1 ; Melvin Henriksen 2
@article{10_4064_cm104_1_5,
author = {Marek Golasi\'nski and Melvin Henriksen},
title = {Residue class rings of real-analytic and entire functions},
journal = {Colloquium Mathematicum},
pages = {85--97},
publisher = {mathdoc},
volume = {104},
number = {1},
year = {2006},
doi = {10.4064/cm104-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-5/}
}
TY - JOUR AU - Marek Golasiński AU - Melvin Henriksen TI - Residue class rings of real-analytic and entire functions JO - Colloquium Mathematicum PY - 2006 SP - 85 EP - 97 VL - 104 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-5/ DO - 10.4064/cm104-1-5 LA - en ID - 10_4064_cm104_1_5 ER -
Marek Golasiński; Melvin Henriksen. Residue class rings of real-analytic and entire functions. Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 85-97. doi: 10.4064/cm104-1-5
Cité par Sources :