Residue class rings of real-analytic and entire functions
Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 85-97.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal{A}(\mathbb{R})$ and $\mathcal{E}(\mathbb{R})$ denote respectively the ring of analytic and real entire functions in one variable. It is shown that if $\mathfrak{m}$ is a maximal ideal of $\mathcal{A}(\mathbb{R})$, then $\mathcal{A}(\mathbb{R})/\mathfrak{m}$ is isomorphic either to the reals or a real closed field that is an $\eta_1$-set, while if $\mathfrak{m}$ is a maximal ideal of $\mathcal{E}(\mathbb{R})$, then $\mathcal{E}(\mathbb{R})/\mathfrak{m}$ is isomorphic to one of the latter two fields or to the field of complex numbers. Moreover, we study the residue class rings of prime ideals of these rings and their Krull dimensions. Use is made of a classical characterization of algebraically closed fields due to E. Steinitz and techniques described in L. Gillman and M. Jerison's book on rings of continuous functions.
DOI : 10.4064/cm104-1-5
Keywords: mathcal mathbb mathcal mathbb denote respectively ring analytic real entire functions variable shown mathfrak maximal ideal mathcal mathbb mathcal mathbb mathfrak isomorphic either reals real closed field eta set while mathfrak maximal ideal mathcal mathbb mathcal mathbb mathfrak isomorphic latter fields field complex numbers moreover study residue class rings prime ideals these rings their krull dimensions made classical characterization algebraically closed fields due nbsp steinitz techniques described nbsp gillman nbsp jerisons book rings continuous functions

Marek Golasiński 1 ; Melvin Henriksen 2

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
2 Department of Mathematics Harvey Mudd College Clarement, CA 91711, U.S.A.
@article{10_4064_cm104_1_5,
     author = {Marek Golasi\'nski and Melvin Henriksen},
     title = {Residue class rings of real-analytic and entire functions},
     journal = {Colloquium Mathematicum},
     pages = {85--97},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2006},
     doi = {10.4064/cm104-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-5/}
}
TY  - JOUR
AU  - Marek Golasiński
AU  - Melvin Henriksen
TI  - Residue class rings of real-analytic and entire functions
JO  - Colloquium Mathematicum
PY  - 2006
SP  - 85
EP  - 97
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-5/
DO  - 10.4064/cm104-1-5
LA  - en
ID  - 10_4064_cm104_1_5
ER  - 
%0 Journal Article
%A Marek Golasiński
%A Melvin Henriksen
%T Residue class rings of real-analytic and entire functions
%J Colloquium Mathematicum
%D 2006
%P 85-97
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-5/
%R 10.4064/cm104-1-5
%G en
%F 10_4064_cm104_1_5
Marek Golasiński; Melvin Henriksen. Residue class rings of real-analytic and entire functions. Colloquium Mathematicum, Tome 104 (2006) no. 1, pp. 85-97. doi : 10.4064/cm104-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm104-1-5/

Cité par Sources :