Regular sets and conditional density: an extension of Benford's law
Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 173-192.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give an extension of Benford's law (first digit problem) by using the concept of conditional density, introduced by Fuchs and Letta. The main tool is the notion of regular subset of integers.
DOI : 10.4064/cm103-2-3
Keywords: extension benfords law first digit problem using concept conditional density introduced fuchs letta main tool notion regular subset integers

Rita Giuliano Antonini 1 ; Georges Grekos 2

1 Dipartimento di Matematica “L. Tonelli” Largo B. Pontecorvo 5 56100 Pisa, Italy
2 Université Jean Monnet 23, rue du Dr. Paul Michelon F-42023 St. Étienne Cedex 2, France
@article{10_4064_cm103_2_3,
     author = {Rita Giuliano Antonini and Georges Grekos},
     title = {Regular sets and conditional density:
 an extension of {Benford's} law},
     journal = {Colloquium Mathematicum},
     pages = {173--192},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2005},
     doi = {10.4064/cm103-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-3/}
}
TY  - JOUR
AU  - Rita Giuliano Antonini
AU  - Georges Grekos
TI  - Regular sets and conditional density:
 an extension of Benford's law
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 173
EP  - 192
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-3/
DO  - 10.4064/cm103-2-3
LA  - en
ID  - 10_4064_cm103_2_3
ER  - 
%0 Journal Article
%A Rita Giuliano Antonini
%A Georges Grekos
%T Regular sets and conditional density:
 an extension of Benford's law
%J Colloquium Mathematicum
%D 2005
%P 173-192
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-3/
%R 10.4064/cm103-2-3
%G en
%F 10_4064_cm103_2_3
Rita Giuliano Antonini; Georges Grekos. Regular sets and conditional density:
 an extension of Benford's law. Colloquium Mathematicum, Tome 103 (2005) no. 2, pp. 173-192. doi : 10.4064/cm103-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm103-2-3/

Cité par Sources :