Nonaliquots and Robbins numbers
Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 27-32.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\varphi(\cdot)$ and $\sigma(\cdot)$ denote the Euler function and the sum of divisors function, respectively. We give a lower bound for the number of $m\le x$ for which the equation $m=\sigma(n)-n$ has no solution. We also show that the set of positive integers $m$ not of the form $(p-1)/2-\varphi(p-1)$ for some prime number $p$ has a positive lower asymptotic density.
DOI : 10.4064/cm103-1-4
Keywords: varphi cdot sigma cdot denote euler function sum divisors function respectively lower bound number which equation sigma n has solution set positive integers form p varphi p prime number has positive lower asymptotic density

William D. Banks 1 ; Florian Luca 2

1 Department of Mathematics University of Missouri Columbia, MO 65211, U.S.A.
2 Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México
@article{10_4064_cm103_1_4,
     author = {William D. Banks and Florian Luca},
     title = {Nonaliquots and {Robbins} numbers},
     journal = {Colloquium Mathematicum},
     pages = {27--32},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2005},
     doi = {10.4064/cm103-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-4/}
}
TY  - JOUR
AU  - William D. Banks
AU  - Florian Luca
TI  - Nonaliquots and Robbins numbers
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 27
EP  - 32
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-4/
DO  - 10.4064/cm103-1-4
LA  - en
ID  - 10_4064_cm103_1_4
ER  - 
%0 Journal Article
%A William D. Banks
%A Florian Luca
%T Nonaliquots and Robbins numbers
%J Colloquium Mathematicum
%D 2005
%P 27-32
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-4/
%R 10.4064/cm103-1-4
%G en
%F 10_4064_cm103_1_4
William D. Banks; Florian Luca. Nonaliquots and Robbins numbers. Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 27-32. doi : 10.4064/cm103-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-4/

Cité par Sources :