Nonaliquots and Robbins numbers
Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 27-32
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\varphi(\cdot)$ and $\sigma(\cdot)$ denote the Euler
function and the sum of divisors function, respectively.
We give a lower bound for the number of $m\le x$ for which
the equation $m=\sigma(n)-n$ has no solution. We also show that the set
of positive integers $m$ not of the form $(p-1)/2-\varphi(p-1)$
for some prime number $p$ has a positive lower asymptotic density.
Keywords:
varphi cdot sigma cdot denote euler function sum divisors function respectively lower bound number which equation sigma n has solution set positive integers form p varphi p prime number has positive lower asymptotic density
Affiliations des auteurs :
William D. Banks 1 ; Florian Luca 2
@article{10_4064_cm103_1_4,
author = {William D. Banks and Florian Luca},
title = {Nonaliquots and {Robbins} numbers},
journal = {Colloquium Mathematicum},
pages = {27--32},
publisher = {mathdoc},
volume = {103},
number = {1},
year = {2005},
doi = {10.4064/cm103-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-4/}
}
William D. Banks; Florian Luca. Nonaliquots and Robbins numbers. Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 27-32. doi: 10.4064/cm103-1-4
Cité par Sources :