E-symmetric numbers
Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 17-25.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A positive integer $n$ is called E-symmetric if there exists a positive integer $m$ such that $|m-n|=(\phi(m),\phi(n))$, and $n$ is called E-asymmetric if it is not E-symmetric. We show that there are infinitely many E-symmetric and E-asymmetric primes.
DOI : 10.4064/cm103-1-3
Keywords: positive integer called e symmetric there exists positive integer m n phi phi called e asymmetric e symmetric there infinitely many e symmetric e asymmetric primes

Gang Yu 1

1 Department of Mathematics LeConte College University of South Carolina 1523 Greene Street Columbia, SC 29208, U.S.A.
@article{10_4064_cm103_1_3,
     author = {Gang Yu},
     title = {E-symmetric numbers},
     journal = {Colloquium Mathematicum},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2005},
     doi = {10.4064/cm103-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-3/}
}
TY  - JOUR
AU  - Gang Yu
TI  - E-symmetric numbers
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 17
EP  - 25
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-3/
DO  - 10.4064/cm103-1-3
LA  - en
ID  - 10_4064_cm103_1_3
ER  - 
%0 Journal Article
%A Gang Yu
%T E-symmetric numbers
%J Colloquium Mathematicum
%D 2005
%P 17-25
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-3/
%R 10.4064/cm103-1-3
%G en
%F 10_4064_cm103_1_3
Gang Yu. E-symmetric numbers. Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 17-25. doi : 10.4064/cm103-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-3/

Cité par Sources :