E-symmetric numbers
Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 17-25
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A positive integer $n$ is called E-symmetric if
there exists a positive integer $m$ such that
$|m-n|=(\phi(m),\phi(n))$, and $n$ is called E-asymmetric if it is not
E-symmetric. We show that there are infinitely many E-symmetric
and E-asymmetric primes.
Keywords:
positive integer called e symmetric there exists positive integer m n phi phi called e asymmetric e symmetric there infinitely many e symmetric e asymmetric primes
Affiliations des auteurs :
Gang Yu 1
@article{10_4064_cm103_1_3,
author = {Gang Yu},
title = {E-symmetric numbers},
journal = {Colloquium Mathematicum},
pages = {17--25},
publisher = {mathdoc},
volume = {103},
number = {1},
year = {2005},
doi = {10.4064/cm103-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-3/}
}
Gang Yu. E-symmetric numbers. Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 17-25. doi: 10.4064/cm103-1-3
Cité par Sources :