On $pq$-hyperelliptic Riemann surfaces
Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 115-120.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A compact Riemann surface $X$ of genus $g>1$ is said to be $p$-hyperelliptic if $X$ admits a conformal involution $\varrho$, called a $p$-hyperelliptic involution, for which $X/\varrho$ is an orbifold of genus $p$. If in addition $X$ admits a $q$-hypereliptic involution then we say that $X$ is $pq$-hyperelliptic. We give a necessary and sufficient condition on $p,q$ and $g$ for existence of a $pq$-hyperelliptic Riemann surface of genus $g$. Moreover we give some conditions under which $p$- and $q$-hyperelliptic involutions of a $pq$-hyperelliptic Riemann surface commute or are unique.
DOI : 10.4064/cm103-1-12
Mots-clés : compact riemann surface genus said p hyperelliptic admits conformal involution varrho called p hyperelliptic involution which varrho orbifold genus addition admits q hypereliptic involution say pq hyperelliptic necessary sufficient condition existence pq hyperelliptic riemann surface genus nbsp moreover conditions under which p q hyperelliptic involutions pq hyperelliptic riemann surface commute unique

Ewa Tyszkowska 1

1 Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland
@article{10_4064_cm103_1_12,
     author = {Ewa Tyszkowska},
     title = {On $pq$-hyperelliptic {Riemann} surfaces},
     journal = {Colloquium Mathematicum},
     pages = {115--120},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2005},
     doi = {10.4064/cm103-1-12},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-12/}
}
TY  - JOUR
AU  - Ewa Tyszkowska
TI  - On $pq$-hyperelliptic Riemann surfaces
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 115
EP  - 120
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-12/
DO  - 10.4064/cm103-1-12
LA  - fr
ID  - 10_4064_cm103_1_12
ER  - 
%0 Journal Article
%A Ewa Tyszkowska
%T On $pq$-hyperelliptic Riemann surfaces
%J Colloquium Mathematicum
%D 2005
%P 115-120
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-12/
%R 10.4064/cm103-1-12
%G fr
%F 10_4064_cm103_1_12
Ewa Tyszkowska. On $pq$-hyperelliptic Riemann surfaces. Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 115-120. doi : 10.4064/cm103-1-12. http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-12/

Cité par Sources :